CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
AliasVault is a privacy-first password manager with built-in email aliasing. A server-side request forgery (SSRF) vulnerability exists in the favicon extraction feature of AliasVault API versions 0.23.0 and lower. The extractor fetches a user-supplied URL, parses the returned HTML, and follows <link rel="icon" href="…">. Although the initial URL is validated to allow only HTTP/HTTPS with default ports, the extractor automatically follows redirects and does not block requests to loopback or internal IP ranges. An authenticated, low-privileged user can exploit this behavior to coerce the backend into making HTTP(S) requests to arbitrary internal hosts and non-default ports. If the target host serves a favicon or any other valid image, the response is returned to the attacker in Base64 form. Even when no data is returned, timing and error behavior can be abused to map internal services. This vulnerability only affects self-hosted AliasVault instances that are reachable from the public internet with public user registration enabled. Private/internal deployments without public sign-ups are not directly exploitable. This issue has been fixed in AliasVault release 0.23.1. |
In the Linux kernel, the following vulnerability has been resolved:
eth: mlx4: Fix IS_ERR() vs NULL check bug in mlx4_en_create_rx_ring
Replace NULL check with IS_ERR() check after calling page_pool_create()
since this function returns error pointers (ERR_PTR).
Using NULL check could lead to invalid pointer dereference. |
In the Linux kernel, the following vulnerability has been resolved:
vxlan: Fix NPD when refreshing an FDB entry with a nexthop object
VXLAN FDB entries can point to either a remote destination or an FDB
nexthop group. The latter is usually used in EVPN deployments where
learning is disabled.
However, when learning is enabled, an incoming packet might try to
refresh an FDB entry that points to an FDB nexthop group and therefore
does not have a remote. Such packets should be dropped, but they are
only dropped after dereferencing the non-existent remote, resulting in a
NPD [1] which can be reproduced using [2].
Fix by dropping such packets earlier. Remove the misleading comment from
first_remote_rcu().
[1]
BUG: kernel NULL pointer dereference, address: 0000000000000000
[...]
CPU: 13 UID: 0 PID: 361 Comm: mausezahn Not tainted 6.17.0-rc1-virtme-g9f6b606b6b37 #1 PREEMPT(voluntary)
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.17.0-4.fc41 04/01/2014
RIP: 0010:vxlan_snoop+0x98/0x1e0
[...]
Call Trace:
<TASK>
vxlan_encap_bypass+0x209/0x240
encap_bypass_if_local+0xb1/0x100
vxlan_xmit_one+0x1375/0x17e0
vxlan_xmit+0x6b4/0x15f0
dev_hard_start_xmit+0x5d/0x1c0
__dev_queue_xmit+0x246/0xfd0
packet_sendmsg+0x113a/0x1850
__sock_sendmsg+0x38/0x70
__sys_sendto+0x126/0x180
__x64_sys_sendto+0x24/0x30
do_syscall_64+0xa4/0x260
entry_SYSCALL_64_after_hwframe+0x4b/0x53
[2]
#!/bin/bash
ip address add 192.0.2.1/32 dev lo
ip address add 192.0.2.2/32 dev lo
ip nexthop add id 1 via 192.0.2.3 fdb
ip nexthop add id 10 group 1 fdb
ip link add name vx0 up type vxlan id 10010 local 192.0.2.1 dstport 12345 localbypass
ip link add name vx1 up type vxlan id 10020 local 192.0.2.2 dstport 54321 learning
bridge fdb add 00:11:22:33:44:55 dev vx0 self static dst 192.0.2.2 port 54321 vni 10020
bridge fdb add 00:aa:bb:cc:dd:ee dev vx1 self static nhid 10
mausezahn vx0 -a 00:aa:bb:cc:dd:ee -b 00:11:22:33:44:55 -c 1 -q |
In the Linux kernel, the following vulnerability has been resolved:
tee: fix NULL pointer dereference in tee_shm_put
tee_shm_put have NULL pointer dereference:
__optee_disable_shm_cache -->
shm = reg_pair_to_ptr(...);//shm maybe return NULL
tee_shm_free(shm); -->
tee_shm_put(shm);//crash
Add check in tee_shm_put to fix it.
panic log:
Unable to handle kernel paging request at virtual address 0000000000100cca
Mem abort info:
ESR = 0x0000000096000004
EC = 0x25: DABT (current EL), IL = 32 bits
SET = 0, FnV = 0
EA = 0, S1PTW = 0
FSC = 0x04: level 0 translation fault
Data abort info:
ISV = 0, ISS = 0x00000004, ISS2 = 0x00000000
CM = 0, WnR = 0, TnD = 0, TagAccess = 0
GCS = 0, Overlay = 0, DirtyBit = 0, Xs = 0
user pgtable: 4k pages, 48-bit VAs, pgdp=0000002049d07000
[0000000000100cca] pgd=0000000000000000, p4d=0000000000000000
Internal error: Oops: 0000000096000004 [#1] SMP
CPU: 2 PID: 14442 Comm: systemd-sleep Tainted: P OE ------- ----
6.6.0-39-generic #38
Source Version: 938b255f6cb8817c95b0dd5c8c2944acfce94b07
Hardware name: greatwall GW-001Y1A-FTH, BIOS Great Wall BIOS V3.0
10/26/2022
pstate: 80000005 (Nzcv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--)
pc : tee_shm_put+0x24/0x188
lr : tee_shm_free+0x14/0x28
sp : ffff001f98f9faf0
x29: ffff001f98f9faf0 x28: ffff0020df543cc0 x27: 0000000000000000
x26: ffff001f811344a0 x25: ffff8000818dac00 x24: ffff800082d8d048
x23: ffff001f850fcd18 x22: 0000000000000001 x21: ffff001f98f9fb88
x20: ffff001f83e76218 x19: ffff001f83e761e0 x18: 000000000000ffff
x17: 303a30303a303030 x16: 0000000000000000 x15: 0000000000000003
x14: 0000000000000001 x13: 0000000000000000 x12: 0101010101010101
x11: 0000000000000001 x10: 0000000000000001 x9 : ffff800080e08d0c
x8 : ffff001f98f9fb88 x7 : 0000000000000000 x6 : 0000000000000000
x5 : 0000000000000000 x4 : 0000000000000000 x3 : 0000000000000000
x2 : ffff001f83e761e0 x1 : 00000000ffff001f x0 : 0000000000100cca
Call trace:
tee_shm_put+0x24/0x188
tee_shm_free+0x14/0x28
__optee_disable_shm_cache+0xa8/0x108
optee_shutdown+0x28/0x38
platform_shutdown+0x28/0x40
device_shutdown+0x144/0x2b0
kernel_power_off+0x3c/0x80
hibernate+0x35c/0x388
state_store+0x64/0x80
kobj_attr_store+0x14/0x28
sysfs_kf_write+0x48/0x60
kernfs_fop_write_iter+0x128/0x1c0
vfs_write+0x270/0x370
ksys_write+0x6c/0x100
__arm64_sys_write+0x20/0x30
invoke_syscall+0x4c/0x120
el0_svc_common.constprop.0+0x44/0xf0
do_el0_svc+0x24/0x38
el0_svc+0x24/0x88
el0t_64_sync_handler+0x134/0x150
el0t_64_sync+0x14c/0x15 |
In the Linux kernel, the following vulnerability has been resolved:
i40e: Fix potential invalid access when MAC list is empty
list_first_entry() never returns NULL - if the list is empty, it still
returns a pointer to an invalid object, leading to potential invalid
memory access when dereferenced.
Fix this by using list_first_entry_or_null instead of list_first_entry. |
In the Linux kernel, the following vulnerability has been resolved:
cifs: prevent NULL pointer dereference in UTF16 conversion
There can be a NULL pointer dereference bug here. NULL is passed to
__cifs_sfu_make_node without checks, which passes it unchecked to
cifs_strndup_to_utf16, which in turn passes it to
cifs_local_to_utf16_bytes where '*from' is dereferenced, causing a crash.
This patch adds a check for NULL 'src' in cifs_strndup_to_utf16 and
returns NULL early to prevent dereferencing NULL pointer.
Found by Linux Verification Center (linuxtesting.org) with SVACE |
In the Linux kernel, the following vulnerability has been resolved:
audit: fix out-of-bounds read in audit_compare_dname_path()
When a watch on dir=/ is combined with an fsnotify event for a
single-character name directly under / (e.g., creating /a), an
out-of-bounds read can occur in audit_compare_dname_path().
The helper parent_len() returns 1 for "/". In audit_compare_dname_path(),
when parentlen equals the full path length (1), the code sets p = path + 1
and pathlen = 1 - 1 = 0. The subsequent loop then dereferences
p[pathlen - 1] (i.e., p[-1]), causing an out-of-bounds read.
Fix this by adding a pathlen > 0 check to the while loop condition
to prevent the out-of-bounds access.
[PM: subject tweak, sign-off email fixes] |
IBM webMethods Integration 10.15 and 11.1 could allow an authenticated user with required execute Services to execute commands on the system due to the improper validation of format string strings passed as an argument from an external source. |
The txtai framework allows the loading of compressed tar files as embedding indices. While the validate function is intended to prevent path traversal vulnerabilities by ensuring safe filenames, it does not account for symbolic links within the tar file. An attacker is able to write a file anywhere in the filesystem when txtai is used to load untrusted embedding indices |
Mesh Connect JS SDK contains JS libraries for integrating with Mesh Connect. Prior to version 3.3.2, the lack of sanitization of URLs protocols in the createLink.openLink function enables the execution of arbitrary JavaScript code within the context of the parent page. This is technically indistinguishable from a real page at the rendering level and allows access to the parent page DOM, storage, session, and cookies. If the attacker can specify customIframeId, they can hijack the source of existing iframes. This issue has been patched in version 3.3.2. |
In the Linux kernel, the following vulnerability has been resolved:
net: dsa: Avoid cross-chip syncing of VLAN filtering
Changes to VLAN filtering are not applicable to cross-chip
notifications.
On a system like this:
.-----. .-----. .-----.
| sw1 +---+ sw2 +---+ sw3 |
'-1-2-' '-1-2-' '-1-2-'
Before this change, upon sw1p1 leaving a bridge, a call to
dsa_port_vlan_filtering would also be made to sw2p1 and sw3p1.
In this scenario:
.---------. .-----. .-----.
| sw1 +---+ sw2 +---+ sw3 |
'-1-2-3-4-' '-1-2-' '-1-2-'
When sw1p4 would leave a bridge, dsa_port_vlan_filtering would be
called for sw2 and sw3 with a non-existing port - leading to array
out-of-bounds accesses and crashes on mv88e6xxx. |
In the Linux kernel, the following vulnerability has been resolved:
bpf, sockmap: Fix double uncharge the mem of sk_msg
If tcp_bpf_sendmsg is running during a tear down operation, psock may be
freed.
tcp_bpf_sendmsg()
tcp_bpf_send_verdict()
sk_msg_return()
tcp_bpf_sendmsg_redir()
unlikely(!psock))
sk_msg_free()
The mem of msg has been uncharged in tcp_bpf_send_verdict() by
sk_msg_return(), and would be uncharged by sk_msg_free() again. When psock
is null, we can simply returning an error code, this would then trigger
the sk_msg_free_nocharge in the error path of __SK_REDIRECT and would have
the side effect of throwing an error up to user space. This would be a
slight change in behavior from user side but would look the same as an
error if the redirect on the socket threw an error.
This issue can cause the following info:
WARNING: CPU: 0 PID: 2136 at net/ipv4/af_inet.c:155 inet_sock_destruct+0x13c/0x260
Call Trace:
<TASK>
__sk_destruct+0x24/0x1f0
sk_psock_destroy+0x19b/0x1c0
process_one_work+0x1b3/0x3c0
worker_thread+0x30/0x350
? process_one_work+0x3c0/0x3c0
kthread+0xe6/0x110
? kthread_complete_and_exit+0x20/0x20
ret_from_fork+0x22/0x30
</TASK> |
In the Linux kernel, the following vulnerability has been resolved:
drm/i915/gem: add missing boundary check in vm_access
A missing bounds check in vm_access() can lead to an out-of-bounds read
or write in the adjacent memory area, since the len attribute is not
validated before the memcpy later in the function, potentially hitting:
[ 183.637831] BUG: unable to handle page fault for address: ffffc90000c86000
[ 183.637934] #PF: supervisor read access in kernel mode
[ 183.637997] #PF: error_code(0x0000) - not-present page
[ 183.638059] PGD 100000067 P4D 100000067 PUD 100258067 PMD 106341067 PTE 0
[ 183.638144] Oops: 0000 [#2] PREEMPT SMP NOPTI
[ 183.638201] CPU: 3 PID: 1790 Comm: poc Tainted: G D 5.17.0-rc6-ci-drm-11296+ #1
[ 183.638298] Hardware name: Intel Corporation CoffeeLake Client Platform/CoffeeLake H DDR4 RVP, BIOS CNLSFWR1.R00.X208.B00.1905301319 05/30/2019
[ 183.638430] RIP: 0010:memcpy_erms+0x6/0x10
[ 183.640213] RSP: 0018:ffffc90001763d48 EFLAGS: 00010246
[ 183.641117] RAX: ffff888109c14000 RBX: ffff888111bece40 RCX: 0000000000000ffc
[ 183.642029] RDX: 0000000000001000 RSI: ffffc90000c86000 RDI: ffff888109c14004
[ 183.642946] RBP: 0000000000000ffc R08: 800000000000016b R09: 0000000000000000
[ 183.643848] R10: ffffc90000c85000 R11: 0000000000000048 R12: 0000000000001000
[ 183.644742] R13: ffff888111bed190 R14: ffff888109c14000 R15: 0000000000001000
[ 183.645653] FS: 00007fe5ef807540(0000) GS:ffff88845b380000(0000) knlGS:0000000000000000
[ 183.646570] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 183.647481] CR2: ffffc90000c86000 CR3: 000000010ff02006 CR4: 00000000003706e0
[ 183.648384] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[ 183.649271] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[ 183.650142] Call Trace:
[ 183.650988] <TASK>
[ 183.651793] vm_access+0x1f0/0x2a0 [i915]
[ 183.652726] __access_remote_vm+0x224/0x380
[ 183.653561] mem_rw.isra.0+0xf9/0x190
[ 183.654402] vfs_read+0x9d/0x1b0
[ 183.655238] ksys_read+0x63/0xe0
[ 183.656065] do_syscall_64+0x38/0xc0
[ 183.656882] entry_SYSCALL_64_after_hwframe+0x44/0xae
[ 183.657663] RIP: 0033:0x7fe5ef725142
[ 183.659351] RSP: 002b:00007ffe1e81c7e8 EFLAGS: 00000246 ORIG_RAX: 0000000000000000
[ 183.660227] RAX: ffffffffffffffda RBX: 0000557055dfb780 RCX: 00007fe5ef725142
[ 183.661104] RDX: 0000000000001000 RSI: 00007ffe1e81d880 RDI: 0000000000000005
[ 183.661972] RBP: 00007ffe1e81e890 R08: 0000000000000030 R09: 0000000000000046
[ 183.662832] R10: 0000557055dfc2e0 R11: 0000000000000246 R12: 0000557055dfb1c0
[ 183.663691] R13: 00007ffe1e81e980 R14: 0000000000000000 R15: 0000000000000000
Changes since v1:
- Updated if condition with range_overflows_t [Chris Wilson]
[mauld: tidy up the commit message and add Cc: stable]
(cherry picked from commit 661412e301e2ca86799aa4f400d1cf0bd38c57c6) |
In the Linux kernel, the following vulnerability has been resolved:
ASoC: codecs: rx-macro: fix accessing array out of bounds for enum type
Accessing enums using integer would result in array out of bounds access
on platforms like aarch64 where sizeof(long) is 8 compared to enum size
which is 4 bytes. |
In the Linux kernel, the following vulnerability has been resolved:
ASoC: codecs: va-macro: fix accessing array out of bounds for enum type
Accessing enums using integer would result in array out of bounds access
on platforms like aarch64 where sizeof(long) is 8 compared to enum size
which is 4 bytes. |
In the Linux kernel, the following vulnerability has been resolved:
ASoC: codecs: rx-macro: fix accessing compander for aux
AUX interpolator does not have compander, so check before accessing
compander data for this.
Without this checkan array of out bounds access will be made in
comp_enabled[] array. |
In the Linux kernel, the following vulnerability has been resolved:
ASoC: codecs: wc938x: fix accessing array out of bounds for enum type
Accessing enums using integer would result in array out of bounds access
on platforms like aarch64 where sizeof(long) is 8 compared to enum size
which is 4 bytes.
Fix this by using enumerated items instead of integers. |
In the Linux kernel, the following vulnerability has been resolved:
remoteproc: Fix count check in rproc_coredump_write()
Check count for 0, to avoid a potential underflow. Make the check the
same as the one in rproc_recovery_write(). |
This CVE ID has been rejected or withdrawn by its CVE Numbering Authority. |
In the Linux kernel, the following vulnerability has been resolved:
dlm: fix plock invalid read
This patch fixes an invalid read showed by KASAN. A unlock will allocate a
"struct plock_op" and a followed send_op() will append it to a global
send_list data structure. In some cases a followed dev_read() moves it
to recv_list and dev_write() will cast it to "struct plock_xop" and access
fields which are only available in those structures. At this point an
invalid read happens by accessing those fields.
To fix this issue the "callback" field is moved to "struct plock_op" to
indicate that a cast to "plock_xop" is allowed and does the additional
"plock_xop" handling if set.
Example of the KASAN output which showed the invalid read:
[ 2064.296453] ==================================================================
[ 2064.304852] BUG: KASAN: slab-out-of-bounds in dev_write+0x52b/0x5a0 [dlm]
[ 2064.306491] Read of size 8 at addr ffff88800ef227d8 by task dlm_controld/7484
[ 2064.308168]
[ 2064.308575] CPU: 0 PID: 7484 Comm: dlm_controld Kdump: loaded Not tainted 5.14.0+ #9
[ 2064.310292] Hardware name: Red Hat KVM, BIOS 0.5.1 01/01/2011
[ 2064.311618] Call Trace:
[ 2064.312218] dump_stack_lvl+0x56/0x7b
[ 2064.313150] print_address_description.constprop.8+0x21/0x150
[ 2064.314578] ? dev_write+0x52b/0x5a0 [dlm]
[ 2064.315610] ? dev_write+0x52b/0x5a0 [dlm]
[ 2064.316595] kasan_report.cold.14+0x7f/0x11b
[ 2064.317674] ? dev_write+0x52b/0x5a0 [dlm]
[ 2064.318687] dev_write+0x52b/0x5a0 [dlm]
[ 2064.319629] ? dev_read+0x4a0/0x4a0 [dlm]
[ 2064.320713] ? bpf_lsm_kernfs_init_security+0x10/0x10
[ 2064.321926] vfs_write+0x17e/0x930
[ 2064.322769] ? __fget_light+0x1aa/0x220
[ 2064.323753] ksys_write+0xf1/0x1c0
[ 2064.324548] ? __ia32_sys_read+0xb0/0xb0
[ 2064.325464] do_syscall_64+0x3a/0x80
[ 2064.326387] entry_SYSCALL_64_after_hwframe+0x44/0xae
[ 2064.327606] RIP: 0033:0x7f807e4ba96f
[ 2064.328470] Code: 89 54 24 18 48 89 74 24 10 89 7c 24 08 e8 39 87 f8 ff 48 8b 54 24 18 48 8b 74 24 10 41 89 c0 8b 7c 24 08 b8 01 00 00 00 0f 05 <48> 3d 00 f0 ff ff 77 31 44 89 c7 48 89 44 24 08 e8 7c 87 f8 ff 48
[ 2064.332902] RSP: 002b:00007ffd50cfe6e0 EFLAGS: 00000293 ORIG_RAX: 0000000000000001
[ 2064.334658] RAX: ffffffffffffffda RBX: 000055cc3886eb30 RCX: 00007f807e4ba96f
[ 2064.336275] RDX: 0000000000000040 RSI: 00007ffd50cfe7e0 RDI: 0000000000000010
[ 2064.337980] RBP: 00007ffd50cfe7e0 R08: 0000000000000000 R09: 0000000000000001
[ 2064.339560] R10: 000055cc3886eb30 R11: 0000000000000293 R12: 000055cc3886eb80
[ 2064.341237] R13: 000055cc3886eb00 R14: 000055cc3886f590 R15: 0000000000000001
[ 2064.342857]
[ 2064.343226] Allocated by task 12438:
[ 2064.344057] kasan_save_stack+0x1c/0x40
[ 2064.345079] __kasan_kmalloc+0x84/0xa0
[ 2064.345933] kmem_cache_alloc_trace+0x13b/0x220
[ 2064.346953] dlm_posix_unlock+0xec/0x720 [dlm]
[ 2064.348811] do_lock_file_wait.part.32+0xca/0x1d0
[ 2064.351070] fcntl_setlk+0x281/0xbc0
[ 2064.352879] do_fcntl+0x5e4/0xfe0
[ 2064.354657] __x64_sys_fcntl+0x11f/0x170
[ 2064.356550] do_syscall_64+0x3a/0x80
[ 2064.358259] entry_SYSCALL_64_after_hwframe+0x44/0xae
[ 2064.360745]
[ 2064.361511] Last potentially related work creation:
[ 2064.363957] kasan_save_stack+0x1c/0x40
[ 2064.365811] __kasan_record_aux_stack+0xaf/0xc0
[ 2064.368100] call_rcu+0x11b/0xf70
[ 2064.369785] dlm_process_incoming_buffer+0x47d/0xfd0 [dlm]
[ 2064.372404] receive_from_sock+0x290/0x770 [dlm]
[ 2064.374607] process_recv_sockets+0x32/0x40 [dlm]
[ 2064.377290] process_one_work+0x9a8/0x16e0
[ 2064.379357] worker_thread+0x87/0xbf0
[ 2064.381188] kthread+0x3ac/0x490
[ 2064.383460] ret_from_fork+0x22/0x30
[ 2064.385588]
[ 2064.386518] Second to last potentially related work creation:
[ 2064.389219] kasan_save_stack+0x1c/0x40
[ 2064.391043] __kasan_record_aux_stack+0xaf/0xc0
[ 2064.393303] call_rcu+0x11b/0xf70
[ 2064.394885] dlm_process_incoming_buffer+0x47d/0xfd0 [dlm]
[ 2064.397694] receive_from_sock+0x290/0x770
---truncated--- |