| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
vsock/bpf: return early if transport is not assigned
Some of the core functions can only be called if the transport
has been assigned.
As Michal reported, a socket might have the transport at NULL,
for example after a failed connect(), causing the following trace:
BUG: kernel NULL pointer dereference, address: 00000000000000a0
#PF: supervisor read access in kernel mode
#PF: error_code(0x0000) - not-present page
PGD 12faf8067 P4D 12faf8067 PUD 113670067 PMD 0
Oops: Oops: 0000 [#1] PREEMPT SMP NOPTI
CPU: 15 UID: 0 PID: 1198 Comm: a.out Not tainted 6.13.0-rc2+
RIP: 0010:vsock_connectible_has_data+0x1f/0x40
Call Trace:
vsock_bpf_recvmsg+0xca/0x5e0
sock_recvmsg+0xb9/0xc0
__sys_recvfrom+0xb3/0x130
__x64_sys_recvfrom+0x20/0x30
do_syscall_64+0x93/0x180
entry_SYSCALL_64_after_hwframe+0x76/0x7e
So we need to check the `vsk->transport` in vsock_bpf_recvmsg(),
especially for connected sockets (stream/seqpacket) as we already
do in __vsock_connectible_recvmsg(). |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: avoid NULL pointer dereference if no valid extent tree
[BUG]
Syzbot reported a crash with the following call trace:
BTRFS info (device loop0): scrub: started on devid 1
BUG: kernel NULL pointer dereference, address: 0000000000000208
#PF: supervisor read access in kernel mode
#PF: error_code(0x0000) - not-present page
PGD 106e70067 P4D 106e70067 PUD 107143067 PMD 0
Oops: Oops: 0000 [#1] PREEMPT SMP NOPTI
CPU: 1 UID: 0 PID: 689 Comm: repro Kdump: loaded Tainted: G O 6.13.0-rc4-custom+ #206
Tainted: [O]=OOT_MODULE
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS unknown 02/02/2022
RIP: 0010:find_first_extent_item+0x26/0x1f0 [btrfs]
Call Trace:
<TASK>
scrub_find_fill_first_stripe+0x13d/0x3b0 [btrfs]
scrub_simple_mirror+0x175/0x260 [btrfs]
scrub_stripe+0x5d4/0x6c0 [btrfs]
scrub_chunk+0xbb/0x170 [btrfs]
scrub_enumerate_chunks+0x2f4/0x5f0 [btrfs]
btrfs_scrub_dev+0x240/0x600 [btrfs]
btrfs_ioctl+0x1dc8/0x2fa0 [btrfs]
? do_sys_openat2+0xa5/0xf0
__x64_sys_ioctl+0x97/0xc0
do_syscall_64+0x4f/0x120
entry_SYSCALL_64_after_hwframe+0x76/0x7e
</TASK>
[CAUSE]
The reproducer is using a corrupted image where extent tree root is
corrupted, thus forcing to use "rescue=all,ro" mount option to mount the
image.
Then it triggered a scrub, but since scrub relies on extent tree to find
where the data/metadata extents are, scrub_find_fill_first_stripe()
relies on an non-empty extent root.
But unfortunately scrub_find_fill_first_stripe() doesn't really expect
an NULL pointer for extent root, it use extent_root to grab fs_info and
triggered a NULL pointer dereference.
[FIX]
Add an extra check for a valid extent root at the beginning of
scrub_find_fill_first_stripe().
The new error path is introduced by 42437a6386ff ("btrfs: introduce
mount option rescue=ignorebadroots"), but that's pretty old, and later
commit b979547513ff ("btrfs: scrub: introduce helper to find and fill
sector info for a scrub_stripe") changed how we do scrub.
So for kernels older than 6.6, the fix will need manual backport. |
| In the Linux kernel, the following vulnerability has been resolved:
net: hns3: fix kernel crash when 1588 is sent on HIP08 devices
Currently, HIP08 devices does not register the ptp devices, so the
hdev->ptp is NULL. But the tx process would still try to set hardware time
stamp info with SKBTX_HW_TSTAMP flag and cause a kernel crash.
[ 128.087798] Unable to handle kernel NULL pointer dereference at virtual address 0000000000000018
...
[ 128.280251] pc : hclge_ptp_set_tx_info+0x2c/0x140 [hclge]
[ 128.286600] lr : hclge_ptp_set_tx_info+0x20/0x140 [hclge]
[ 128.292938] sp : ffff800059b93140
[ 128.297200] x29: ffff800059b93140 x28: 0000000000003280
[ 128.303455] x27: ffff800020d48280 x26: ffff0cb9dc814080
[ 128.309715] x25: ffff0cb9cde93fa0 x24: 0000000000000001
[ 128.315969] x23: 0000000000000000 x22: 0000000000000194
[ 128.322219] x21: ffff0cd94f986000 x20: 0000000000000000
[ 128.328462] x19: ffff0cb9d2a166c0 x18: 0000000000000000
[ 128.334698] x17: 0000000000000000 x16: ffffcf1fc523ed24
[ 128.340934] x15: 0000ffffd530a518 x14: 0000000000000000
[ 128.347162] x13: ffff0cd6bdb31310 x12: 0000000000000368
[ 128.353388] x11: ffff0cb9cfbc7070 x10: ffff2cf55dd11e02
[ 128.359606] x9 : ffffcf1f85a212b4 x8 : ffff0cd7cf27dab0
[ 128.365831] x7 : 0000000000000a20 x6 : ffff0cd7cf27d000
[ 128.372040] x5 : 0000000000000000 x4 : 000000000000ffff
[ 128.378243] x3 : 0000000000000400 x2 : ffffcf1f85a21294
[ 128.384437] x1 : ffff0cb9db520080 x0 : ffff0cb9db500080
[ 128.390626] Call trace:
[ 128.393964] hclge_ptp_set_tx_info+0x2c/0x140 [hclge]
[ 128.399893] hns3_nic_net_xmit+0x39c/0x4c4 [hns3]
[ 128.405468] xmit_one.constprop.0+0xc4/0x200
[ 128.410600] dev_hard_start_xmit+0x54/0xf0
[ 128.415556] sch_direct_xmit+0xe8/0x634
[ 128.420246] __dev_queue_xmit+0x224/0xc70
[ 128.425101] dev_queue_xmit+0x1c/0x40
[ 128.429608] ovs_vport_send+0xac/0x1a0 [openvswitch]
[ 128.435409] do_output+0x60/0x17c [openvswitch]
[ 128.440770] do_execute_actions+0x898/0x8c4 [openvswitch]
[ 128.446993] ovs_execute_actions+0x64/0xf0 [openvswitch]
[ 128.453129] ovs_dp_process_packet+0xa0/0x224 [openvswitch]
[ 128.459530] ovs_vport_receive+0x7c/0xfc [openvswitch]
[ 128.465497] internal_dev_xmit+0x34/0xb0 [openvswitch]
[ 128.471460] xmit_one.constprop.0+0xc4/0x200
[ 128.476561] dev_hard_start_xmit+0x54/0xf0
[ 128.481489] __dev_queue_xmit+0x968/0xc70
[ 128.486330] dev_queue_xmit+0x1c/0x40
[ 128.490856] ip_finish_output2+0x250/0x570
[ 128.495810] __ip_finish_output+0x170/0x1e0
[ 128.500832] ip_finish_output+0x3c/0xf0
[ 128.505504] ip_output+0xbc/0x160
[ 128.509654] ip_send_skb+0x58/0xd4
[ 128.513892] udp_send_skb+0x12c/0x354
[ 128.518387] udp_sendmsg+0x7a8/0x9c0
[ 128.522793] inet_sendmsg+0x4c/0x8c
[ 128.527116] __sock_sendmsg+0x48/0x80
[ 128.531609] __sys_sendto+0x124/0x164
[ 128.536099] __arm64_sys_sendto+0x30/0x5c
[ 128.540935] invoke_syscall+0x50/0x130
[ 128.545508] el0_svc_common.constprop.0+0x10c/0x124
[ 128.551205] do_el0_svc+0x34/0xdc
[ 128.555347] el0_svc+0x20/0x30
[ 128.559227] el0_sync_handler+0xb8/0xc0
[ 128.563883] el0_sync+0x160/0x180 |
| In the Linux kernel, the following vulnerability has been resolved:
drm/xe: Fix tlb invalidation when wedging
If GuC fails to load, the driver wedges, but in the process it tries to
do stuff that may not be initialized yet. This moves the
xe_gt_tlb_invalidation_init() to be done earlier: as its own doc says,
it's a software-only initialization and should had been named with the
_early() suffix.
Move it to be called by xe_gt_init_early(), so the locks and seqno are
initialized, avoiding a NULL ptr deref when wedging:
xe 0000:03:00.0: [drm] *ERROR* GT0: load failed: status: Reset = 0, BootROM = 0x50, UKernel = 0x00, MIA = 0x00, Auth = 0x01
xe 0000:03:00.0: [drm] *ERROR* GT0: firmware signature verification failed
xe 0000:03:00.0: [drm] *ERROR* CRITICAL: Xe has declared device 0000:03:00.0 as wedged.
...
BUG: kernel NULL pointer dereference, address: 0000000000000000
#PF: supervisor read access in kernel mode
#PF: error_code(0x0000) - not-present page
PGD 0 P4D 0
Oops: Oops: 0000 [#1] PREEMPT SMP NOPTI
CPU: 9 UID: 0 PID: 3908 Comm: modprobe Tainted: G U W 6.13.0-rc4-xe+ #3
Tainted: [U]=USER, [W]=WARN
Hardware name: Intel Corporation Alder Lake Client Platform/AlderLake-S ADP-S DDR5 UDIMM CRB, BIOS ADLSFWI1.R00.3275.A00.2207010640 07/01/2022
RIP: 0010:xe_gt_tlb_invalidation_reset+0x75/0x110 [xe]
This can be easily triggered by poking the GuC binary to force a
signature failure. There will still be an extra message,
xe 0000:03:00.0: [drm] *ERROR* GT0: GuC mmio request 0x4100: no reply 0x4100
but that's better than a NULL ptr deref.
(cherry picked from commit 5001ef3af8f2c972d6fd9c5221a8457556f8bea6) |
| In the Linux kernel, the following vulnerability has been resolved:
mptcp: sysctl: sched: avoid using current->nsproxy
Using the 'net' structure via 'current' is not recommended for different
reasons.
First, if the goal is to use it to read or write per-netns data, this is
inconsistent with how the "generic" sysctl entries are doing: directly
by only using pointers set to the table entry, e.g. table->data. Linked
to that, the per-netns data should always be obtained from the table
linked to the netns it had been created for, which may not coincide with
the reader's or writer's netns.
Another reason is that access to current->nsproxy->netns can oops if
attempted when current->nsproxy had been dropped when the current task
is exiting. This is what syzbot found, when using acct(2):
Oops: general protection fault, probably for non-canonical address 0xdffffc0000000005: 0000 [#1] PREEMPT SMP KASAN PTI
KASAN: null-ptr-deref in range [0x0000000000000028-0x000000000000002f]
CPU: 1 UID: 0 PID: 5924 Comm: syz-executor Not tainted 6.13.0-rc5-syzkaller-00004-gccb98ccef0e5 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 09/13/2024
RIP: 0010:proc_scheduler+0xc6/0x3c0 net/mptcp/ctrl.c:125
Code: 03 42 80 3c 38 00 0f 85 fe 02 00 00 4d 8b a4 24 08 09 00 00 48 b8 00 00 00 00 00 fc ff df 49 8d 7c 24 28 48 89 fa 48 c1 ea 03 <80> 3c 02 00 0f 85 cc 02 00 00 4d 8b 7c 24 28 48 8d 84 24 c8 00 00
RSP: 0018:ffffc900034774e8 EFLAGS: 00010206
RAX: dffffc0000000000 RBX: 1ffff9200068ee9e RCX: ffffc90003477620
RDX: 0000000000000005 RSI: ffffffff8b08f91e RDI: 0000000000000028
RBP: 0000000000000001 R08: ffffc90003477710 R09: 0000000000000040
R10: 0000000000000040 R11: 00000000726f7475 R12: 0000000000000000
R13: ffffc90003477620 R14: ffffc90003477710 R15: dffffc0000000000
FS: 0000000000000000(0000) GS:ffff8880b8700000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007fee3cd452d8 CR3: 000000007d116000 CR4: 00000000003526f0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
proc_sys_call_handler+0x403/0x5d0 fs/proc/proc_sysctl.c:601
__kernel_write_iter+0x318/0xa80 fs/read_write.c:612
__kernel_write+0xf6/0x140 fs/read_write.c:632
do_acct_process+0xcb0/0x14a0 kernel/acct.c:539
acct_pin_kill+0x2d/0x100 kernel/acct.c:192
pin_kill+0x194/0x7c0 fs/fs_pin.c:44
mnt_pin_kill+0x61/0x1e0 fs/fs_pin.c:81
cleanup_mnt+0x3ac/0x450 fs/namespace.c:1366
task_work_run+0x14e/0x250 kernel/task_work.c:239
exit_task_work include/linux/task_work.h:43 [inline]
do_exit+0xad8/0x2d70 kernel/exit.c:938
do_group_exit+0xd3/0x2a0 kernel/exit.c:1087
get_signal+0x2576/0x2610 kernel/signal.c:3017
arch_do_signal_or_restart+0x90/0x7e0 arch/x86/kernel/signal.c:337
exit_to_user_mode_loop kernel/entry/common.c:111 [inline]
exit_to_user_mode_prepare include/linux/entry-common.h:329 [inline]
__syscall_exit_to_user_mode_work kernel/entry/common.c:207 [inline]
syscall_exit_to_user_mode+0x150/0x2a0 kernel/entry/common.c:218
do_syscall_64+0xda/0x250 arch/x86/entry/common.c:89
entry_SYSCALL_64_after_hwframe+0x77/0x7f
RIP: 0033:0x7fee3cb87a6a
Code: Unable to access opcode bytes at 0x7fee3cb87a40.
RSP: 002b:00007fffcccac688 EFLAGS: 00000202 ORIG_RAX: 0000000000000037
RAX: 0000000000000000 RBX: 00007fffcccac710 RCX: 00007fee3cb87a6a
RDX: 0000000000000041 RSI: 0000000000000000 RDI: 0000000000000003
RBP: 0000000000000003 R08: 00007fffcccac6ac R09: 00007fffcccacac7
R10: 00007fffcccac710 R11: 0000000000000202 R12: 00007fee3cd49500
R13: 00007fffcccac6ac R14: 0000000000000000 R15: 00007fee3cd4b000
</TASK>
Modules linked in:
---[ end trace 0000000000000000 ]---
RIP: 0010:proc_scheduler+0xc6/0x3c0 net/mptcp/ctrl.c:125
Code: 03 42 80 3c 38 00 0f 85 fe 02 00 00 4d 8b a4 24 08 09 00 00 48 b8 00 00 00 00 00 fc
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
mptcp: sysctl: blackhole timeout: avoid using current->nsproxy
As mentioned in the previous commit, using the 'net' structure via
'current' is not recommended for different reasons:
- Inconsistency: getting info from the reader's/writer's netns vs only
from the opener's netns.
- current->nsproxy can be NULL in some cases, resulting in an 'Oops'
(null-ptr-deref), e.g. when the current task is exiting, as spotted by
syzbot [1] using acct(2).
The 'pernet' structure can be obtained from the table->data using
container_of(). |
| In the Linux kernel, the following vulnerability has been resolved:
rds: sysctl: rds_tcp_{rcv,snd}buf: avoid using current->nsproxy
As mentioned in a previous commit of this series, using the 'net'
structure via 'current' is not recommended for different reasons:
- Inconsistency: getting info from the reader's/writer's netns vs only
from the opener's netns.
- current->nsproxy can be NULL in some cases, resulting in an 'Oops'
(null-ptr-deref), e.g. when the current task is exiting, as spotted by
syzbot [1] using acct(2).
The per-netns structure can be obtained from the table->data using
container_of(), then the 'net' one can be retrieved from the listen
socket (if available). |
| In the Linux kernel, the following vulnerability has been resolved:
firmware: qcom: scm: Fix missing read barrier in qcom_scm_get_tzmem_pool()
Commit 2e4955167ec5 ("firmware: qcom: scm: Fix __scm and waitq
completion variable initialization") introduced a write barrier in probe
function to store global '__scm' variable. We all known barriers are
paired (see memory-barriers.txt: "Note that write barriers should
normally be paired with read or address-dependency barriers"), therefore
accessing it from concurrent contexts requires read barrier. Previous
commit added such barrier in qcom_scm_is_available(), so let's use that
directly.
Lack of this read barrier can result in fetching stale '__scm' variable
value, NULL, and dereferencing it.
Note that barrier in qcom_scm_is_available() satisfies here the control
dependency. |
| In the Linux kernel, the following vulnerability has been resolved:
clk: mmp2: call pm_genpd_init() only after genpd.name is set
Setting the genpd's struct device's name with dev_set_name() is
happening within pm_genpd_init(). If it remains NULL, things can blow up
later, such as when crafting the devfs hierarchy for the power domain:
Unable to handle kernel NULL pointer dereference at virtual address 00000000 when read
...
Call trace:
strlen from start_creating+0x90/0x138
start_creating from debugfs_create_dir+0x20/0x178
debugfs_create_dir from genpd_debug_add.part.0+0x4c/0x144
genpd_debug_add.part.0 from genpd_debug_init+0x74/0x90
genpd_debug_init from do_one_initcall+0x5c/0x244
do_one_initcall from kernel_init_freeable+0x19c/0x1f4
kernel_init_freeable from kernel_init+0x1c/0x12c
kernel_init from ret_from_fork+0x14/0x28
Bisecting tracks this crash back to commit 899f44531fe6 ("pmdomain: core:
Add GENPD_FLAG_DEV_NAME_FW flag"), which exchanges use of genpd->name
with dev_name(&genpd->dev) in genpd_debug_add.part(). |
| In the Linux kernel, the following vulnerability has been resolved:
drm/msm/dpu: check dpu_plane_atomic_print_state() for valid sspp
Similar to the r_pipe sspp protect, add a check to protect
the pipe state prints to avoid NULL ptr dereference for cases when
the state is dumped without a corresponding atomic_check() where the
pipe->sspp is assigned.
Patchwork: https://patchwork.freedesktop.org/patch/628404/ |
| In the Linux kernel, the following vulnerability has been resolved:
clk: mmp: pxa1908-mpmu: Fix a NULL vs IS_ERR() check
The devm_kzalloc() function returns NULL on error, not error pointers.
Update the check to match. |
| In the Linux kernel, the following vulnerability has been resolved:
clk: mmp: pxa1908-apbcp: Fix a NULL vs IS_ERR() check
The devm_kzalloc() function doesn't return error pointers, it returns
NULL on error. Update the check to match. |
| In the Linux kernel, the following vulnerability has been resolved:
clk: mmp: pxa1908-apbc: Fix NULL vs IS_ERR() check
The devm_kzalloc() function returns NULL on error, not error pointers.
Fix the check. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: cfg80211: tests: Fix potential NULL dereference in test_cfg80211_parse_colocated_ap()
kunit_kzalloc() may return NULL, dereferencing it without NULL check may
lead to NULL dereference.
Add a NULL check for ies. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: iwlwifi: mvm: avoid NULL pointer dereference
When iterating over the links of a vif, we need to make sure that the
pointer is valid (in other words - that the link exists) before
dereferncing it.
Use for_each_vif_active_link that also does the check. |
| In the Linux kernel, the following vulnerability has been resolved:
mailbox: th1520: Fix a NULL vs IS_ERR() bug
The devm_ioremap() function doesn't return error pointers, it returns
NULL. Update the error checking to match. |
| In the Linux kernel, the following vulnerability has been resolved:
HID: winwing: Add NULL check in winwing_init_led()
devm_kasprintf() can return a NULL pointer on failure,but this
returned value in winwing_init_led() is not checked.
Add NULL check in winwing_init_led(), to handle kernel NULL
pointer dereference error. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: mt76: mt7925: fix NULL deref check in mt7925_change_vif_links
In mt7925_change_vif_links() devm_kzalloc() may return NULL but this
returned value is not checked. |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: btbcm: Fix NULL deref in btbcm_get_board_name()
devm_kstrdup() can return a NULL pointer on failure,but this
returned value in btbcm_get_board_name() is not checked.
Add NULL check in btbcm_get_board_name(), to handle kernel NULL
pointer dereference error. |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: btrtl: check for NULL in btrtl_setup_realtek()
If insert an USB dongle which chip is not maintained in ic_id_table, it
will hit the NULL point accessed. Add a null point check to avoid the
Kernel Oops. |