| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
powerpc/rtas: Prevent Spectre v1 gadget construction in sys_rtas()
Smatch warns:
arch/powerpc/kernel/rtas.c:1932 __do_sys_rtas() warn: potential
spectre issue 'args.args' [r] (local cap)
The 'nargs' and 'nret' locals come directly from a user-supplied
buffer and are used as indexes into a small stack-based array and as
inputs to copy_to_user() after they are subject to bounds checks.
Use array_index_nospec() after the bounds checks to clamp these values
for speculative execution. |
| In the Linux kernel, the following vulnerability has been resolved:
Both cadence-quadspi ->runtime_suspend() and ->runtime_resume()
implementations start with:
struct cqspi_st *cqspi = dev_get_drvdata(dev);
struct spi_controller *host = dev_get_drvdata(dev);
This obviously cannot be correct, unless "struct cqspi_st" is the
first member of " struct spi_controller", or the other way around, but
it is not the case. "struct spi_controller" is allocated by
devm_spi_alloc_host(), which allocates an extra amount of memory for
private data, used to store "struct cqspi_st".
The ->probe() function of the cadence-quadspi driver then sets the
device drvdata to store the address of the "struct cqspi_st"
structure. Therefore:
struct cqspi_st *cqspi = dev_get_drvdata(dev);
is correct, but:
struct spi_controller *host = dev_get_drvdata(dev);
is not, as it makes "host" point not to a "struct spi_controller" but
to the same "struct cqspi_st" structure as above.
This obviously leads to bad things (memory corruption, kernel crashes)
directly during ->probe(), as ->probe() enables the device using PM
runtime, leading the ->runtime_resume() hook being called, which in
turns calls spi_controller_resume() with the wrong pointer.
This has at least been reported [0] to cause a kernel crash, but the
exact behavior will depend on the memory contents.
[0] https://lore.kernel.org/all/20240226121803.5a7r5wkpbbowcxgx@dhruva/
This issue potentially affects all platforms that are currently using
the cadence-quadspi driver. |
| A malicious server can crash the OpenAFS cache manager and other client
utilities, and possibly execute arbitrary code. |
| In Das U-Boot through 2022.07-rc5, an integer signedness error and resultant stack-based buffer overflow in the "i2c md" command enables the corruption of the return address pointer of the do_i2c_md function. |
| squashfs filesystem implementation of U-Boot versions from v2020.10-rc2 to v2022.07-rc5 contains a heap-based buffer overflow vulnerability due to a defect in the metadata reading process. Loading a specially crafted squashfs image may lead to a denial-of-service (DoS) condition or arbitrary code execution. |
| Das U-Boot from v2020.10 to v2022.07-rc3 was discovered to contain an out-of-bounds write via the function sqfs_readdir(). |
| Das U-Boot 2022.01 has a Buffer Overflow, a different issue than CVE-2022-30552. |
| There exists an unchecked length field in UBoot. The U-Boot DFU implementation does not bound the length field in USB DFU download setup packets, and it does not verify that the transfer direction corresponds to the specified command. Consequently, if a physical attacker crafts a USB DFU download setup packet with a `wLength` greater than 4096 bytes, they can write beyond the heap-allocated request buffer. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amdgpu: Fix even more out of bound writes from debugfs
CVE-2021-42327 was fixed by:
commit f23750b5b3d98653b31d4469592935ef6364ad67
Author: Thelford Williams <tdwilliamsiv@gmail.com>
Date: Wed Oct 13 16:04:13 2021 -0400
drm/amdgpu: fix out of bounds write
but amdgpu_dm_debugfs.c contains more of the same issue so fix the
remaining ones.
v2:
* Add missing fix in dp_max_bpc_write (Harry Wentland) |
| XMP Toolkit SDK version 2021.07 (and earlier) is affected by a stack-based buffer overflow vulnerability potentially resulting in arbitrary code execution in the context of the current user. Exploitation requires user interaction in that a victim must open a crafted file. |
| XMP Toolkit SDK version 2021.07 (and earlier) is affected by a stack-based buffer overflow vulnerability potentially resulting in arbitrary code execution in the context of the current user. Exploitation requires user interaction in that a victim must open a crafted file. |
| XMP Toolkit SDK version 2021.07 (and earlier) is affected by a stack-based buffer overflow vulnerability potentially resulting in arbitrary code execution in the context of the current user. Exploitation requires user interaction in that a victim must open a crafted file. |
| A heap-based buffer overflow was found in openjpeg in color.c:379:42 in sycc420_to_rgb when decompressing a crafted .j2k file. An attacker could use this to execute arbitrary code with the permissions of the application compiled against openjpeg. |
| Existing CommBuffer checks in SmmEntryPoint will not catch underflow when computing BufferSize. |
| XMP Toolkit SDK version 2020.1 (and earlier) is affected by a buffer overflow vulnerability potentially resulting in local application denial of service in the context of the current user. Exploitation requires user interaction in that a victim must open a crafted file. |
| XMP Toolkit version 2020.1 (and earlier) is affected by a memory corruption vulnerability, potentially resulting in arbitrary code execution in the context of the current user. User interaction is required to exploit this vulnerability. |
| XMP Toolkit SDK version 2020.1 (and earlier) is affected by a buffer overflow vulnerability potentially resulting in arbitrary code execution in the context of the current user. Exploitation requires user interaction in that a victim must open a crafted file. |
| XMP Toolkit version 2020.1 (and earlier) is affected by a memory corruption vulnerability, potentially resulting in arbitrary code execution in the context of the current user. User interaction is required to exploit this vulnerability. |
| A flaw was found in libcaca. A buffer overflow of export.c in function export_troff might lead to memory corruption and other potential consequences. |
| A flaw was found in libcaca. A heap buffer overflow in export.c in function export_tga might lead to memory corruption and other potential consequences. |