| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| NVIDIA Triton Inference Server for Windows and Linux contains a vulnerability where multiple requests could cause a double free when a stream is cancelled before it is processed. A successful exploit of this vulnerability might lead to denial of service. |
| NVIDIA Triton Inference Server for Windows and Linux contains a vulnerability where a user could cause a divide by zero issue by issuing an invalid request. A successful exploit of this vulnerability might lead to denial of service. |
| NVIDIA Triton Inference Server for Windows and Linux contains a vulnerability in the Python backend, where an attacker could cause the shared memory limit to be exceeded by sending a very large request. A successful exploit of this vulnerability might lead to information disclosure. |
| NVIDIA Triton Inference Server for Windows and Linux contains a vulnerability in the Python backend, where an attacker could cause an out-of-bounds write by sending a request. A successful exploit of this vulnerability might lead to remote code execution, denial of service, data tampering, or information disclosure. |
| NVIDIA Triton Inference Server for Windows and Linux contains a vulnerability in the Python backend, where an attacker could cause an out-of-bounds write. A successful exploit of this vulnerability might lead to code execution, denial of service, data tampering, and information disclosure. |
| NVIDIA Triton Inference Server contains a vulnerability in the HTTP server, where an attacker could start a reverse shell by sending a specially crafted HTTP request. A successful exploit of this vulnerability might lead to remote code execution, denial of service, data tampering, or information disclosure. |
| NVIDIA Triton Inference Server contains a vulnerability where an attacker could cause a stack overflow through specially crafted HTTP requests. A successful exploit of this vulnerability might lead to remote code execution, denial of service, information disclosure, or data tampering. |
| NVIDIA Triton Inference Server for Windows and Linux contains a vulnerability where an attacker could cause stack buffer overflow by specially crafted inputs. A successful exploit of this vulnerability might lead to remote code execution, denial of service, information disclosure, and data tampering. |
| This CVE ID has been rejected or withdrawn by its CVE Numbering Authority. |
| This CVE ID has been rejected or withdrawn by its CVE Numbering Authority. |
| Inappropriate implementation in Picture In Picture in Google Chrome prior to 139.0.7258.66 allowed a remote attacker who convinced a user to engage in specific UI gestures to perform UI spoofing via a crafted HTML page. (Chromium security severity: Medium) |
| Inappropriate implementation in Picture In Picture in Google Chrome prior to 139.0.7258.66 allowed a remote attacker who convinced a user to engage in specific UI gestures to perform UI spoofing via a crafted HTML page. (Chromium security severity: Low) |
| Inappropriate implementation in Filesystems in Google Chrome prior to 139.0.7258.66 allowed a remote attacker to perform UI spoofing via a crafted HTML page. (Chromium security severity: Low) |
| Inappropriate implementation in Extensions in Google Chrome prior to 139.0.7258.66 allowed a remote attacker who convinced a user to engage in specific UI gestures to leak cross-origin data via a crafted HTML page. (Chromium security severity: Low) |
| Inappropriate implementation in Permissions in Google Chrome prior to 139.0.7258.66 allowed a remote attacker to perform UI spoofing via a crafted HTML page. (Chromium security severity: Low) |
| A flaw was found within the handling of SMB2_READ commands in the kernel ksmbd module. The issue results from not releasing memory after its effective lifetime. An attacker can leverage this to create a denial-of-service condition on affected installations of Linux. Authentication is not required to exploit this vulnerability, but only systems with ksmbd enabled are vulnerable. |
| A flaw was found within the handling of SMB2 read requests in the kernel ksmbd module. The issue results from the lack of proper validation of user-supplied data, which can result in a read past the end of an allocated buffer. An attacker can leverage this to disclose sensitive information on affected installations of Linux. Only systems with ksmbd enabled are vulnerable to this CVE. |
| A flaw was found within the parsing of SMB2 requests that have a transform header in the kernel ksmbd module. The issue results from the lack of proper validation of user-supplied data, which can result in a read past the end of an allocated buffer. An attacker can leverage this to disclose sensitive information on affected installations of Linux. Only systems with ksmbd enabled are vulnerable to this CVE. |
| Use after free in Media Stream in Google Chrome prior to 138.0.7204.183 allowed a remote attacker to potentially exploit heap corruption via a crafted HTML page. (Chromium security severity: High) |
| In the Linux kernel, the following vulnerability has been resolved:
bpf, sockmap: Don't let sock_map_{close,destroy,unhash} call itself
sock_map proto callbacks should never call themselves by design. Protect
against bugs like [1] and break out of the recursive loop to avoid a stack
overflow in favor of a resource leak.
[1] https://lore.kernel.org/all/00000000000073b14905ef2e7401@google.com/ |