Search Results (15912 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2025-23318 3 Linux, Microsoft, Nvidia 3 Linux Kernel, Windows, Triton Inference Server 2025-08-12 8.1 High
NVIDIA Triton Inference Server for Windows and Linux contains a vulnerability in the Python backend, where an attacker could cause an out-of-bounds write. A successful exploit of this vulnerability might lead to code execution, denial of service, data tampering, and information disclosure.
CVE-2025-23317 3 Linux, Microsoft, Nvidia 3 Linux Kernel, Windows, Triton Inference Server 2025-08-12 9.1 Critical
NVIDIA Triton Inference Server contains a vulnerability in the HTTP server, where an attacker could start a reverse shell by sending a specially crafted HTTP request. A successful exploit of this vulnerability might lead to remote code execution, denial of service, data tampering, or information disclosure.
CVE-2025-23311 3 Linux, Microsoft, Nvidia 3 Linux Kernel, Windows, Triton Inference Server 2025-08-12 9.8 Critical
NVIDIA Triton Inference Server contains a vulnerability where an attacker could cause a stack overflow through specially crafted HTTP requests. A successful exploit of this vulnerability might lead to remote code execution, denial of service, information disclosure, or data tampering.
CVE-2025-23310 3 Linux, Microsoft, Nvidia 3 Linux Kernel, Windows, Triton Inference Server 2025-08-12 9.8 Critical
NVIDIA Triton Inference Server for Windows and Linux contains a vulnerability where an attacker could cause stack buffer overflow by specially crafted inputs. A successful exploit of this vulnerability might lead to remote code execution, denial of service, information disclosure, and data tampering.
CVE-2025-38213 1 Linux 1 Linux Kernel 2025-08-11 5.5 Medium
This CVE ID has been rejected or withdrawn by its CVE Numbering Authority.
CVE-2022-50031 1 Linux 1 Linux Kernel 2025-08-11 7.0 High
This CVE ID has been rejected or withdrawn by its CVE Numbering Authority.
CVE-2025-8577 4 Apple, Google, Linux and 1 more 4 Macos, Chrome, Linux Kernel and 1 more 2025-08-08 4.3 Medium
Inappropriate implementation in Picture In Picture in Google Chrome prior to 139.0.7258.66 allowed a remote attacker who convinced a user to engage in specific UI gestures to perform UI spoofing via a crafted HTML page. (Chromium security severity: Medium)
CVE-2025-8579 4 Apple, Google, Linux and 1 more 4 Macos, Chrome, Linux Kernel and 1 more 2025-08-08 4.3 Medium
Inappropriate implementation in Picture In Picture in Google Chrome prior to 139.0.7258.66 allowed a remote attacker who convinced a user to engage in specific UI gestures to perform UI spoofing via a crafted HTML page. (Chromium security severity: Low)
CVE-2025-8580 4 Apple, Google, Linux and 1 more 4 Macos, Chrome, Linux Kernel and 1 more 2025-08-08 4.3 Medium
Inappropriate implementation in Filesystems in Google Chrome prior to 139.0.7258.66 allowed a remote attacker to perform UI spoofing via a crafted HTML page. (Chromium security severity: Low)
CVE-2025-8581 4 Apple, Google, Linux and 1 more 4 Macos, Chrome, Linux Kernel and 1 more 2025-08-08 4.3 Medium
Inappropriate implementation in Extensions in Google Chrome prior to 139.0.7258.66 allowed a remote attacker who convinced a user to engage in specific UI gestures to leak cross-origin data via a crafted HTML page. (Chromium security severity: Low)
CVE-2025-8583 4 Apple, Google, Linux and 1 more 4 Macos, Chrome, Linux Kernel and 1 more 2025-08-08 4.3 Medium
Inappropriate implementation in Permissions in Google Chrome prior to 139.0.7258.66 allowed a remote attacker to perform UI spoofing via a crafted HTML page. (Chromium security severity: Low)
CVE-2023-39180 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2025-08-06 4 Medium
A flaw was found within the handling of SMB2_READ commands in the kernel ksmbd module. The issue results from not releasing memory after its effective lifetime. An attacker can leverage this to create a denial-of-service condition on affected installations of Linux. Authentication is not required to exploit this vulnerability, but only systems with ksmbd enabled are vulnerable.
CVE-2023-39179 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2025-08-06 7.5 High
A flaw was found within the handling of SMB2 read requests in the kernel ksmbd module. The issue results from the lack of proper validation of user-supplied data, which can result in a read past the end of an allocated buffer. An attacker can leverage this to disclose sensitive information on affected installations of Linux. Only systems with ksmbd enabled are vulnerable to this CVE.
CVE-2023-39176 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2025-08-06 5.8 Medium
A flaw was found within the parsing of SMB2 requests that have a transform header in the kernel ksmbd module. The issue results from the lack of proper validation of user-supplied data, which can result in a read past the end of an allocated buffer. An attacker can leverage this to disclose sensitive information on affected installations of Linux. Only systems with ksmbd enabled are vulnerable to this CVE.
CVE-2025-8292 4 Apple, Google, Linux and 1 more 4 Macos, Chrome, Linux Kernel and 1 more 2025-08-01 8.8 High
Use after free in Media Stream in Google Chrome prior to 138.0.7204.183 allowed a remote attacker to potentially exploit heap corruption via a crafted HTML page. (Chromium security severity: High)
CVE-2023-52735 2 Linux, Redhat 2 Linux Kernel, Rhel Eus 2025-07-30 9.1 Critical
In the Linux kernel, the following vulnerability has been resolved: bpf, sockmap: Don't let sock_map_{close,destroy,unhash} call itself sock_map proto callbacks should never call themselves by design. Protect against bugs like [1] and break out of the recursive loop to avoid a stack overflow in favor of a resource leak. [1] https://lore.kernel.org/all/00000000000073b14905ef2e7401@google.com/
CVE-2023-52920 1 Linux 1 Linux Kernel 2025-07-30 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: bpf: support non-r10 register spill/fill to/from stack in precision tracking Use instruction (jump) history to record instructions that performed register spill/fill to/from stack, regardless if this was done through read-only r10 register, or any other register after copying r10 into it *and* potentially adjusting offset. To make this work reliably, we push extra per-instruction flags into instruction history, encoding stack slot index (spi) and stack frame number in extra 10 bit flags we take away from prev_idx in instruction history. We don't touch idx field for maximum performance, as it's checked most frequently during backtracking. This change removes basically the last remaining practical limitation of precision backtracking logic in BPF verifier. It fixes known deficiencies, but also opens up new opportunities to reduce number of verified states, explored in the subsequent patches. There are only three differences in selftests' BPF object files according to veristat, all in the positive direction (less states). File Program Insns (A) Insns (B) Insns (DIFF) States (A) States (B) States (DIFF) -------------------------------------- ------------- --------- --------- ------------- ---------- ---------- ------------- test_cls_redirect_dynptr.bpf.linked3.o cls_redirect 2987 2864 -123 (-4.12%) 240 231 -9 (-3.75%) xdp_synproxy_kern.bpf.linked3.o syncookie_tc 82848 82661 -187 (-0.23%) 5107 5073 -34 (-0.67%) xdp_synproxy_kern.bpf.linked3.o syncookie_xdp 85116 84964 -152 (-0.18%) 5162 5130 -32 (-0.62%) Note, I avoided renaming jmp_history to more generic insn_hist to minimize number of lines changed and potential merge conflicts between bpf and bpf-next trees. Notice also cur_hist_entry pointer reset to NULL at the beginning of instruction verification loop. This pointer avoids the problem of relying on last jump history entry's insn_idx to determine whether we already have entry for current instruction or not. It can happen that we added jump history entry because current instruction is_jmp_point(), but also we need to add instruction flags for stack access. In this case, we don't want to entries, so we need to reuse last added entry, if it is present. Relying on insn_idx comparison has the same ambiguity problem as the one that was fixed recently in [0], so we avoid that. [0] https://patchwork.kernel.org/project/netdevbpf/patch/20231110002638.4168352-3-andrii@kernel.org/
CVE-2024-11395 4 Apple, Google, Linux and 1 more 4 Macos, Chrome, Linux Kernel and 1 more 2025-07-29 8.8 High
Type Confusion in V8 in Google Chrome prior to 131.0.6778.85 allowed a remote attacker to potentially exploit heap corruption via a crafted HTML page. (Chromium security severity: High)
CVE-2025-1079 3 Apple, Google, Linux 3 Macos, Web Designer, Linux Kernel 2025-07-29 7.8 High
Client RCE on macOS and Linux via improper symbolic link resolution in Google Web Designer's preview feature
CVE-2023-32257 3 Linux, Netapp, Redhat 7 Linux Kernel, H300s, H410s and 4 more 2025-07-29 8.1 High
A flaw was found in the Linux kernel's ksmbd, a high-performance in-kernel SMB server. The specific flaw exists within the processing of SMB2_SESSION_SETUP and SMB2_LOGOFF commands. The issue results from the lack of proper locking when performing operations on an object. An attacker can leverage this vulnerability to execute code in the context of the kernel.