CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
In the Linux kernel, the following vulnerability has been resolved:
ubifs: Free memory for tmpfile name
When opening a ubifs tmpfile on an encrypted directory, function
fscrypt_setup_filename allocates memory for the name that is to be
stored in the directory entry, but after the name has been copied to the
directory entry inode, the memory is not freed.
When running kmemleak on it we see that it is registered as a leak. The
report below is triggered by a simple program 'tmpfile' just opening a
tmpfile:
unreferenced object 0xffff88810178f380 (size 32):
comm "tmpfile", pid 509, jiffies 4294934744 (age 1524.742s)
backtrace:
__kmem_cache_alloc_node
__kmalloc
fscrypt_setup_filename
ubifs_tmpfile
vfs_tmpfile
path_openat
Free this memory after it has been copied to the inode. |
In the Linux kernel, the following vulnerability has been resolved:
drivers: staging: rtl8723bs: Fix locking in _rtw_join_timeout_handler()
Commit 041879b12ddb ("drivers: staging: rtl8192bs: Fix deadlock in
rtw_joinbss_event_prehandle()") besides fixing the deadlock also
modified _rtw_join_timeout_handler() to use spin_[un]lock_irq()
instead of spin_[un]lock_bh().
_rtw_join_timeout_handler() calls rtw_do_join() which takes
pmlmepriv->scanned_queue.lock using spin_[un]lock_bh(). This
spin_unlock_bh() call re-enables softirqs which triggers an oops in
kernel/softirq.c: __local_bh_enable_ip() when it calls
lockdep_assert_irqs_enabled():
[ 244.506087] WARNING: CPU: 2 PID: 0 at kernel/softirq.c:376 __local_bh_enable_ip+0xa6/0x100
...
[ 244.509022] Call Trace:
[ 244.509048] <IRQ>
[ 244.509100] _rtw_join_timeout_handler+0x134/0x170 [r8723bs]
[ 244.509468] ? __pfx__rtw_join_timeout_handler+0x10/0x10 [r8723bs]
[ 244.509772] ? __pfx__rtw_join_timeout_handler+0x10/0x10 [r8723bs]
[ 244.510076] call_timer_fn+0x95/0x2a0
[ 244.510200] __run_timers.part.0+0x1da/0x2d0
This oops is causd by the switch to spin_[un]lock_irq() which disables
the IRQs for the entire duration of _rtw_join_timeout_handler().
Disabling the IRQs is not necessary since all code taking this lock
runs from either user contexts or from softirqs, switch back to
spin_[un]lock_bh() to fix this. |
In the Linux kernel, the following vulnerability has been resolved:
ext4: add bounds checking in get_max_inline_xattr_value_size()
Normally the extended attributes in the inode body would have been
checked when the inode is first opened, but if someone is writing to
the block device while the file system is mounted, it's possible for
the inode table to get corrupted. Add bounds checking to avoid
reading beyond the end of allocated memory if this happens. |
In the Linux kernel, the following vulnerability has been resolved:
block: ublk: make sure that block size is set correctly
block size is one very key setting for block layer, and bad block size
could panic kernel easily.
Make sure that block size is set correctly.
Meantime if ublk_validate_params() fails, clear ub->params so that disk
is prevented from being added. |
In the Linux kernel, the following vulnerability has been resolved:
clk: mediatek: mt8183: Add back SSPM related clocks
This reverts commit 860690a93ef23b567f781c1b631623e27190f101.
On the MT8183, the SSPM related clocks were removed claiming a lack of
usage. This however causes some issues when the driver was converted to
the new simple-probe mechanism. This mechanism allocates enough space
for all the clocks defined in the clock driver, not the highest index
in the DT binding. This leads to out-of-bound writes if their are holes
in the DT binding or the driver (due to deprecated or unimplemented
clocks). These errors can go unnoticed and cause memory corruption,
leading to crashes in unrelated areas, or nothing at all. KASAN will
detect them.
Add the SSPM related clocks back to the MT8183 clock driver to fully
implement the DT binding. The SSPM clocks are for the power management
co-processor, and should never be turned off. They are marked as such. |
In the Linux kernel, the following vulnerability has been resolved:
sctp: check send stream number after wait_for_sndbuf
This patch fixes a corner case where the asoc out stream count may change
after wait_for_sndbuf.
When the main thread in the client starts a connection, if its out stream
count is set to N while the in stream count in the server is set to N - 2,
another thread in the client keeps sending the msgs with stream number
N - 1, and waits for sndbuf before processing INIT_ACK.
However, after processing INIT_ACK, the out stream count in the client is
shrunk to N - 2, the same to the in stream count in the server. The crash
occurs when the thread waiting for sndbuf is awake and sends the msg in a
non-existing stream(N - 1), the call trace is as below:
KASAN: null-ptr-deref in range [0x0000000000000038-0x000000000000003f]
Call Trace:
<TASK>
sctp_cmd_send_msg net/sctp/sm_sideeffect.c:1114 [inline]
sctp_cmd_interpreter net/sctp/sm_sideeffect.c:1777 [inline]
sctp_side_effects net/sctp/sm_sideeffect.c:1199 [inline]
sctp_do_sm+0x197d/0x5310 net/sctp/sm_sideeffect.c:1170
sctp_primitive_SEND+0x9f/0xc0 net/sctp/primitive.c:163
sctp_sendmsg_to_asoc+0x10eb/0x1a30 net/sctp/socket.c:1868
sctp_sendmsg+0x8d4/0x1d90 net/sctp/socket.c:2026
inet_sendmsg+0x9d/0xe0 net/ipv4/af_inet.c:825
sock_sendmsg_nosec net/socket.c:722 [inline]
sock_sendmsg+0xde/0x190 net/socket.c:745
The fix is to add an unlikely check for the send stream number after the
thread wakes up from the wait_for_sndbuf. |
The Spring Security annotation detection mechanism may not correctly resolve annotations on methods within type hierarchies with a parameterized super type with unbounded generics. This can be an issue when using @PreAuthorize and other method security annotations, resulting in an authorization bypass.
Your application may be affected by this if you are using Spring Security's @EnableMethodSecurity feature.
You are not affected by this if you are not using @EnableMethodSecurity or if you do not use security annotations on methods in generic superclasses or generic interfaces.
This CVE is published in conjunction with CVE-2025-41249 https://spring.io/security/cve-2025-41249 . |
In the Linux kernel, the following vulnerability has been resolved:
arm64: acpi: Fix possible memory leak of ffh_ctxt
Allocated 'ffh_ctxt' memory leak is possible if the SMCCC version
and conduit checks fail and -EOPNOTSUPP is returned without freeing the
allocated memory.
Fix the same by moving the allocation after the SMCCC version and
conduit checks. |
In the Linux kernel, the following vulnerability has been resolved:
drm/client: Fix memory leak in drm_client_modeset_probe
When a new mode is set to modeset->mode, the previous mode should be freed.
This fixes the following kmemleak report:
drm_mode_duplicate+0x45/0x220 [drm]
drm_client_modeset_probe+0x944/0xf50 [drm]
__drm_fb_helper_initial_config_and_unlock+0xb4/0x2c0 [drm_kms_helper]
drm_fbdev_client_hotplug+0x2bc/0x4d0 [drm_kms_helper]
drm_client_register+0x169/0x240 [drm]
ast_pci_probe+0x142/0x190 [ast]
local_pci_probe+0xdc/0x180
work_for_cpu_fn+0x4e/0xa0
process_one_work+0x8b7/0x1540
worker_thread+0x70a/0xed0
kthread+0x29f/0x340
ret_from_fork+0x1f/0x30 |
The Sparkle framework includes an XPC service Downloader.xpc, by default this service is private to the application its bundled with. A local unprivileged attacker can register this XPC service globally which will inherit TCC permissions of the application.
Lack of validation of connecting client allows the attacker to copy TCC-protected files to an arbitrary location. Access to other resources beyond granted-permissions requires user interaction with a system prompt asking for permission.
This issue was fixed in version 2.7.2 |
In the Linux kernel, the following vulnerability has been resolved:
f2fs: fix kernel crash due to null io->bio
We should return when io->bio is null before doing anything. Otherwise, panic.
BUG: kernel NULL pointer dereference, address: 0000000000000010
RIP: 0010:__submit_merged_write_cond+0x164/0x240 [f2fs]
Call Trace:
<TASK>
f2fs_submit_merged_write+0x1d/0x30 [f2fs]
commit_checkpoint+0x110/0x1e0 [f2fs]
f2fs_write_checkpoint+0x9f7/0xf00 [f2fs]
? __pfx_issue_checkpoint_thread+0x10/0x10 [f2fs]
__checkpoint_and_complete_reqs+0x84/0x190 [f2fs]
? preempt_count_add+0x82/0xc0
? __pfx_issue_checkpoint_thread+0x10/0x10 [f2fs]
issue_checkpoint_thread+0x4c/0xf0 [f2fs]
? __pfx_autoremove_wake_function+0x10/0x10
kthread+0xff/0x130
? __pfx_kthread+0x10/0x10
ret_from_fork+0x2c/0x50
</TASK> |
In the Linux kernel, the following vulnerability has been resolved:
Drivers: vmbus: Check for channel allocation before looking up relids
relid2channel() assumes vmbus channel array to be allocated when called.
However, in cases such as kdump/kexec, not all relids will be reset by the host.
When the second kernel boots and if the guest receives a vmbus interrupt during
vmbus driver initialization before vmbus_connect() is called, before it finishes,
or if it fails, the vmbus interrupt service routine is called which in turn calls
relid2channel() and can cause a null pointer dereference.
Print a warning and error out in relid2channel() for a channel id that's invalid
in the second kernel. |
In the Linux kernel, the following vulnerability has been resolved:
media: hi846: Fix memleak in hi846_init_controls()
hi846_init_controls doesn't clean the allocated ctrl_hdlr
in case there is a failure, which causes memleak. Add
v4l2_ctrl_handler_free to free the resource properly. |
In the Linux kernel, the following vulnerability has been resolved:
wifi: iwl3945: Add missing check for create_singlethread_workqueue
Add the check for the return value of the create_singlethread_workqueue
in order to avoid NULL pointer dereference. |
In the Linux kernel, the following vulnerability has been resolved:
fs/ntfs3: Fix null-ptr-deref on inode->i_op in ntfs_lookup()
Syzbot reported a null-ptr-deref bug:
ntfs3: loop0: Different NTFS' sector size (1024) and media sector size
(512)
ntfs3: loop0: Mark volume as dirty due to NTFS errors
general protection fault, probably for non-canonical address
0xdffffc0000000001: 0000 [#1] PREEMPT SMP KASAN
KASAN: null-ptr-deref in range [0x0000000000000008-0x000000000000000f]
RIP: 0010:d_flags_for_inode fs/dcache.c:1980 [inline]
RIP: 0010:__d_add+0x5ce/0x800 fs/dcache.c:2796
Call Trace:
<TASK>
d_splice_alias+0x122/0x3b0 fs/dcache.c:3191
lookup_open fs/namei.c:3391 [inline]
open_last_lookups fs/namei.c:3481 [inline]
path_openat+0x10e6/0x2df0 fs/namei.c:3688
do_filp_open+0x264/0x4f0 fs/namei.c:3718
do_sys_openat2+0x124/0x4e0 fs/open.c:1310
do_sys_open fs/open.c:1326 [inline]
__do_sys_open fs/open.c:1334 [inline]
__se_sys_open fs/open.c:1330 [inline]
__x64_sys_open+0x221/0x270 fs/open.c:1330
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x3d/0xb0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
If the MFT record of ntfs inode is not a base record, inode->i_op can be
NULL. And a null-ptr-deref may happen:
ntfs_lookup()
dir_search_u() # inode->i_op is set to NULL
d_splice_alias()
__d_add()
d_flags_for_inode() # inode->i_op->get_link null-ptr-deref
Fix this by adding a Check on inode->i_op before calling the
d_splice_alias() function. |
In the Linux kernel, the following vulnerability has been resolved:
wifi: iwl4965: Add missing check for create_singlethread_workqueue()
Add the check for the return value of the create_singlethread_workqueue()
in order to avoid NULL pointer dereference. |
In the Linux kernel, the following vulnerability has been resolved:
clk: imx: clk-imxrt1050: fix memory leak in imxrt1050_clocks_probe
Use devm_of_iomap() instead of of_iomap() to automatically
handle the unused ioremap region. If any error occurs, regions allocated by
kzalloc() will leak, but using devm_kzalloc() instead will automatically
free the memory using devm_kfree().
Also, fix error handling of hws by adding unregister_hws label, which
unregisters remaining hws when iomap failed. |
In the Linux kernel, the following vulnerability has been resolved:
misc: vmw_balloon: fix memory leak with using debugfs_lookup()
When calling debugfs_lookup() the result must have dput() called on it,
otherwise the memory will leak over time. To make things simpler, just
call debugfs_lookup_and_remove() instead which handles all of the logic at
once. |
In the Linux kernel, the following vulnerability has been resolved:
ASoC: fsl_mqs: move of_node_put() to the correct location
of_node_put() should have been done directly after
mqs_priv->regmap = syscon_node_to_regmap(gpr_np);
otherwise it creates a reference leak on the success path.
To fix this, of_node_put() is moved to the correct location, and change
all the gotos to direct returns. |
In the Linux kernel, the following vulnerability has been resolved:
ALSA: hda: fix a possible null-pointer dereference due to data race in snd_hdac_regmap_sync()
The variable codec->regmap is often protected by the lock
codec->regmap_lock when is accessed. However, it is accessed without
holding the lock when is accessed in snd_hdac_regmap_sync():
if (codec->regmap)
In my opinion, this may be a harmful race, because if codec->regmap is
set to NULL right after the condition is checked, a null-pointer
dereference can occur in the called function regcache_sync():
map->lock(map->lock_arg); --> Line 360 in drivers/base/regmap/regcache.c
To fix this possible null-pointer dereference caused by data race, the
mutex_lock coverage is extended to protect the if statement as well as the
function call to regcache_sync().
[ Note: the lack of the regmap_lock itself is harmless for the current
codec driver implementations, as snd_hdac_regmap_sync() is only for
PM runtime resume that is prohibited during the codec probe.
But the change makes the whole code more consistent, so it's merged
as is -- tiwai ] |