CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
Buffer overflow in the lldp_decode function in daemon/protocols/lldp.c in lldpd before 0.8.0 allows remote attackers to cause a denial of service (daemon crash) and possibly execute arbitrary code via vectors involving large management addresses and TLV boundaries. |
The process_tx_desc function in hw/net/e1000.c in QEMU before 2.4.0.1 does not properly process transmit descriptor data when sending a network packet, which allows attackers to cause a denial of service (infinite loop and guest crash) via unspecified vectors. |
The net/http library in net/http/transfer.go in Go before 1.4.3 does not properly parse HTTP headers, which allows remote attackers to conduct HTTP request smuggling attacks via a request that contains Content-Length and Transfer-Encoding header fields. |
Qemu before 2.0 block driver for Hyper-V VHDX Images is vulnerable to infinite loops and other potential issues when calculating BAT entries, due to missing bounds checks for block_size and logical_sector_size variables. These are used to derive other fields like 'sectors_per_block' etc. A user able to alter the Qemu disk image could ise this flaw to crash the Qemu instance resulting in DoS. |
Qemu before 1.6.2 block diver for the various disk image formats used by Bochs and for the QCOW version 2 format, are vulnerable to a possible crash caused by signed data types or a logic error while creating QCOW2 snapshots, which leads to incorrectly calling update_refcount() routine. |
QEMU before 2.0.0 block drivers for CLOOP, QCOW2 version 2 and various other image formats are vulnerable to potential memory corruptions, integer/buffer overflows or crash caused by missing input validations which could allow a remote user to execute arbitrary code on the host with the privileges of the QEMU process. |
Nokogiri gem 1.5.x and 1.6.x has DoS while parsing XML entities by failing to apply limits |
Nokogiri gem 1.5.x has Denial of Service via infinite loop when parsing XML documents |
An user able to alter the savevm data (either on the disk or over the wire during migration) could use this flaw to to corrupt QEMU process memory on the (destination) host, which could potentially result in arbitrary code execution on the host with the privileges of the QEMU process. |
The virtqueue_map_sg function in hw/virtio/virtio.c in QEMU before 1.7.2 allows remote attackers to execute arbitrary files via a crafted savevm image, related to virtio-block or virtio-serial read. |
HTTPSConnections in OpenStack Keystone 2013, OpenStack Compute 2013.1, and possibly other OpenStack components, fail to validate server-side SSL certificates. |
python-keystoneclient version 0.2.3 to 0.2.5 has middleware memcache signing bypass |
python-keystoneclient version 0.2.3 to 0.2.5 has middleware memcache encryption bypass |
openstack-utils openstack-db has insecure password creation |
Nokogiri before 1.5.4 is vulnerable to XXE attacks |
The file /etc/openstack-dashboard/local_settings within Red Hat OpenStack Platform 2.0 and RHOS Essex Release (python-django-horizon package before 2012.1.1) is world readable and exposes the secret key value. |
Waitress is a Web Server Gateway Interface server for Python 2 and 3. A remote client may send a request that is exactly recv_bytes (defaults to 8192) long, followed by a secondary request using HTTP pipelining. When request lookahead is disabled (default) we won't read any more requests, and when the first request fails due to a parsing error, we simply close the connection. However when request lookahead is enabled, it is possible to process and receive the first request, start sending the error message back to the client while we read the next request and queue it. This will allow the secondary request to be serviced by the worker thread while the connection should be closed. Waitress 3.0.1 fixes the race condition. As a workaround, disable channel_request_lookahead, this is set to 0 by default disabling this feature. |
In OpenStack Ironic before 26.0.1 and ironic-python-agent before 9.13.1, there is a vulnerability in image processing, in which a crafted image could be used by an authenticated user to exploit undesired behaviors in qemu-img, including possible unauthorized access to potentially sensitive data. The affected/fixed version details are: Ironic: <21.4.3, >=22.0.0 <23.0.2, >=23.1.0 <24.1.2, >=25.0.0 <26.0.1; Ironic-python-agent: <9.4.2, >=9.5.0 <9.7.1, >=9.8.0 <9.11.1, >=9.12.0 <9.13.1. |
DISPUTE NOTE: this issue does not pose a security risk as it (according to analysis by the original software developer, NLnet Labs) falls within the expected functionality and security controls of the application. Red Hat has made a claim that there is a security risk within Red Hat products. NLnet Labs has no further information about the claim, and suggests that affected Red Hat customers refer to available Red Hat documentation or support channels. ORIGINAL DESCRIPTION: A heap-buffer-overflow flaw was found in the cfg_mark_ports function within Unbound's config_file.c, which can lead to memory corruption. This issue could allow an attacker with local access to provide specially crafted input, potentially causing the application to crash or allowing arbitrary code execution. This could result in a denial of service or unauthorized actions on the system. |
WebOb provides objects for HTTP requests and responses. When WebOb normalizes the HTTP Location header to include the request hostname, it does so by parsing the URL that the user is to be redirected to with Python's urlparse, and joining it to the base URL. `urlparse` however treats a `//` at the start of a string as a URI without a scheme, and then treats the next part as the hostname. `urljoin` will then use that hostname from the second part as the hostname replacing the original one from the request. This vulnerability is patched in WebOb version 1.8.8. |