CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
In the Linux kernel, the following vulnerability has been resolved:
ax25: properly unshare skbs in ax25_kiss_rcv()
Bernard Pidoux reported a regression apparently caused by commit
c353e8983e0d ("net: introduce per netns packet chains").
skb->dev becomes NULL and we crash in __netif_receive_skb_core().
Before above commit, different kind of bugs or corruptions could happen
without a major crash.
But the root cause is that ax25_kiss_rcv() can queue/mangle input skb
without checking if this skb is shared or not.
Many thanks to Bernard Pidoux for his help, diagnosis and tests.
We had a similar issue years ago fixed with commit 7aaed57c5c28
("phonet: properly unshare skbs in phonet_rcv()"). |
In the Linux kernel, the following vulnerability has been resolved:
x86/mm/64: define ARCH_PAGE_TABLE_SYNC_MASK and arch_sync_kernel_mappings()
Define ARCH_PAGE_TABLE_SYNC_MASK and arch_sync_kernel_mappings() to ensure
page tables are properly synchronized when calling p*d_populate_kernel().
For 5-level paging, synchronization is performed via
pgd_populate_kernel(). In 4-level paging, pgd_populate() is a no-op, so
synchronization is instead performed at the P4D level via
p4d_populate_kernel().
This fixes intermittent boot failures on systems using 4-level paging and
a large amount of persistent memory:
BUG: unable to handle page fault for address: ffffe70000000034
#PF: supervisor write access in kernel mode
#PF: error_code(0x0002) - not-present page
PGD 0 P4D 0
Oops: 0002 [#1] SMP NOPTI
RIP: 0010:__init_single_page+0x9/0x6d
Call Trace:
<TASK>
__init_zone_device_page+0x17/0x5d
memmap_init_zone_device+0x154/0x1bb
pagemap_range+0x2e0/0x40f
memremap_pages+0x10b/0x2f0
devm_memremap_pages+0x1e/0x60
dev_dax_probe+0xce/0x2ec [device_dax]
dax_bus_probe+0x6d/0xc9
[... snip ...]
</TASK>
It also fixes a crash in vmemmap_set_pmd() caused by accessing vmemmap
before sync_global_pgds() [1]:
BUG: unable to handle page fault for address: ffffeb3ff1200000
#PF: supervisor write access in kernel mode
#PF: error_code(0x0002) - not-present page
PGD 0 P4D 0
Oops: Oops: 0002 [#1] PREEMPT SMP NOPTI
Tainted: [W]=WARN
RIP: 0010:vmemmap_set_pmd+0xff/0x230
<TASK>
vmemmap_populate_hugepages+0x176/0x180
vmemmap_populate+0x34/0x80
__populate_section_memmap+0x41/0x90
sparse_add_section+0x121/0x3e0
__add_pages+0xba/0x150
add_pages+0x1d/0x70
memremap_pages+0x3dc/0x810
devm_memremap_pages+0x1c/0x60
xe_devm_add+0x8b/0x100 [xe]
xe_tile_init_noalloc+0x6a/0x70 [xe]
xe_device_probe+0x48c/0x740 [xe]
[... snip ...] |
In the Linux kernel, the following vulnerability has been resolved:
ice: fix NULL access of tx->in_use in ice_ll_ts_intr
Recent versions of the E810 firmware have support for an extra interrupt to
handle report of the "low latency" Tx timestamps coming from the
specialized low latency firmware interface. Instead of polling the
registers, software can wait until the low latency interrupt is fired.
This logic makes use of the Tx timestamp tracking structure, ice_ptp_tx, as
it uses the same "ready" bitmap to track which Tx timestamps complete.
Unfortunately, the ice_ll_ts_intr() function does not check if the
tracker is initialized before its first access. This results in NULL
dereference or use-after-free bugs similar to the issues fixed in the
ice_ptp_ts_irq() function.
Fix this by only checking the in_use bitmap (and other fields) if the
tracker is marked as initialized. The reset flow will clear the init field
under lock before it tears the tracker down, thus preventing any
use-after-free or NULL access. |
In the Linux kernel, the following vulnerability has been resolved:
ice: fix NULL access of tx->in_use in ice_ptp_ts_irq
The E810 device has support for a "low latency" firmware interface to
access and read the Tx timestamps. This interface does not use the standard
Tx timestamp logic, due to the latency overhead of proxying sideband
command requests over the firmware AdminQ.
The logic still makes use of the Tx timestamp tracking structure,
ice_ptp_tx, as it uses the same "ready" bitmap to track which Tx
timestamps complete.
Unfortunately, the ice_ptp_ts_irq() function does not check if the tracker
is initialized before its first access. This results in NULL dereference or
use-after-free bugs similar to the following:
[245977.278756] BUG: kernel NULL pointer dereference, address: 0000000000000000
[245977.278774] RIP: 0010:_find_first_bit+0x19/0x40
[245977.278796] Call Trace:
[245977.278809] ? ice_misc_intr+0x364/0x380 [ice]
This can occur if a Tx timestamp interrupt races with the driver reset
logic.
Fix this by only checking the in_use bitmap (and other fields) if the
tracker is marked as initialized. The reset flow will clear the init field
under lock before it tears the tracker down, thus preventing any
use-after-free or NULL access. |
In the Linux kernel, the following vulnerability has been resolved:
net: ethernet: ti: am65-cpsw-nuss: Fix null pointer dereference for ndev
In the TX completion packet stage of TI SoCs with CPSW2G instance, which
has single external ethernet port, ndev is accessed without being
initialized if no TX packets have been processed. It results into null
pointer dereference, causing kernel to crash. Fix this by having a check
on the number of TX packets which have been processed. |
In the Linux kernel, the following vulnerability has been resolved:
net/smc: fix one NULL pointer dereference in smc_ib_is_sg_need_sync()
BUG: kernel NULL pointer dereference, address: 00000000000002ec
PGD 0 P4D 0
Oops: Oops: 0000 [#1] SMP PTI
CPU: 28 UID: 0 PID: 343 Comm: kworker/28:1 Kdump: loaded Tainted: G OE 6.17.0-rc2+ #9 NONE
Tainted: [O]=OOT_MODULE, [E]=UNSIGNED_MODULE
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.15.0-1 04/01/2014
Workqueue: smc_hs_wq smc_listen_work [smc]
RIP: 0010:smc_ib_is_sg_need_sync+0x9e/0xd0 [smc]
...
Call Trace:
<TASK>
smcr_buf_map_link+0x211/0x2a0 [smc]
__smc_buf_create+0x522/0x970 [smc]
smc_buf_create+0x3a/0x110 [smc]
smc_find_rdma_v2_device_serv+0x18f/0x240 [smc]
? smc_vlan_by_tcpsk+0x7e/0xe0 [smc]
smc_listen_find_device+0x1dd/0x2b0 [smc]
smc_listen_work+0x30f/0x580 [smc]
process_one_work+0x18c/0x340
worker_thread+0x242/0x360
kthread+0xe7/0x220
ret_from_fork+0x13a/0x160
ret_from_fork_asm+0x1a/0x30
</TASK>
If the software RoCE device is used, ibdev->dma_device is a null pointer.
As a result, the problem occurs. Null pointer detection is added to
prevent problems. |
In the Linux kernel, the following vulnerability has been resolved:
eth: mlx4: Fix IS_ERR() vs NULL check bug in mlx4_en_create_rx_ring
Replace NULL check with IS_ERR() check after calling page_pool_create()
since this function returns error pointers (ERR_PTR).
Using NULL check could lead to invalid pointer dereference. |
In the Linux kernel, the following vulnerability has been resolved:
ptp: ocp: fix use-after-free bugs causing by ptp_ocp_watchdog
The ptp_ocp_detach() only shuts down the watchdog timer if it is
pending. However, if the timer handler is already running, the
timer_delete_sync() is not called. This leads to race conditions
where the devlink that contains the ptp_ocp is deallocated while
the timer handler is still accessing it, resulting in use-after-free
bugs. The following details one of the race scenarios.
(thread 1) | (thread 2)
ptp_ocp_remove() |
ptp_ocp_detach() | ptp_ocp_watchdog()
if (timer_pending(&bp->watchdog))| bp = timer_container_of()
timer_delete_sync() |
|
devlink_free(devlink) //free |
| bp-> //use
Resolve this by unconditionally calling timer_delete_sync() to ensure
the timer is reliably deactivated, preventing any access after free. |
In the Linux kernel, the following vulnerability has been resolved:
wifi: mt76: mt7915: fix list corruption after hardware restart
Since stations are recreated from scratch, all lists that wcids are added
to must be cleared before calling ieee80211_restart_hw.
Set wcid->sta = 0 for each wcid entry in order to ensure that they are
not added again before they are ready. |
In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: vhci: Prevent use-after-free by removing debugfs files early
Move the creation of debugfs files into a dedicated function, and ensure
they are explicitly removed during vhci_release(), before associated
data structures are freed.
Previously, debugfs files such as "force_suspend", "force_wakeup", and
others were created under hdev->debugfs but not removed in
vhci_release(). Since vhci_release() frees the backing vhci_data
structure, any access to these files after release would result in
use-after-free errors.
Although hdev->debugfs is later freed in hci_release_dev(), user can
access files after vhci_data is freed but before hdev->debugfs is
released. |
In the Linux kernel, the following vulnerability has been resolved:
wifi: brcmfmac: fix use-after-free when rescheduling brcmf_btcoex_info work
The brcmf_btcoex_detach() only shuts down the btcoex timer, if the
flag timer_on is false. However, the brcmf_btcoex_timerfunc(), which
runs as timer handler, sets timer_on to false. This creates critical
race conditions:
1.If brcmf_btcoex_detach() is called while brcmf_btcoex_timerfunc()
is executing, it may observe timer_on as false and skip the call to
timer_shutdown_sync().
2.The brcmf_btcoex_timerfunc() may then reschedule the brcmf_btcoex_info
worker after the cancel_work_sync() has been executed, resulting in
use-after-free bugs.
The use-after-free bugs occur in two distinct scenarios, depending on
the timing of when the brcmf_btcoex_info struct is freed relative to
the execution of its worker thread.
Scenario 1: Freed before the worker is scheduled
The brcmf_btcoex_info is deallocated before the worker is scheduled.
A race condition can occur when schedule_work(&bt_local->work) is
called after the target memory has been freed. The sequence of events
is detailed below:
CPU0 | CPU1
brcmf_btcoex_detach | brcmf_btcoex_timerfunc
| bt_local->timer_on = false;
if (cfg->btcoex->timer_on) |
... |
cancel_work_sync(); |
... |
kfree(cfg->btcoex); // FREE |
| schedule_work(&bt_local->work); // USE
Scenario 2: Freed after the worker is scheduled
The brcmf_btcoex_info is freed after the worker has been scheduled
but before or during its execution. In this case, statements within
the brcmf_btcoex_handler() — such as the container_of macro and
subsequent dereferences of the brcmf_btcoex_info object will cause
a use-after-free access. The following timeline illustrates this
scenario:
CPU0 | CPU1
brcmf_btcoex_detach | brcmf_btcoex_timerfunc
| bt_local->timer_on = false;
if (cfg->btcoex->timer_on) |
... |
cancel_work_sync(); |
... | schedule_work(); // Reschedule
|
kfree(cfg->btcoex); // FREE | brcmf_btcoex_handler() // Worker
/* | btci = container_of(....); // USE
The kfree() above could | ...
also occur at any point | btci-> // USE
during the worker's execution|
*/ |
To resolve the race conditions, drop the conditional check and call
timer_shutdown_sync() directly. It can deactivate the timer reliably,
regardless of its current state. Once stopped, the timer_on state is
then set to false. |
In the Linux kernel, the following vulnerability has been resolved:
wifi: cfg80211: fix use-after-free in cmp_bss()
Following bss_free() quirk introduced in commit 776b3580178f
("cfg80211: track hidden SSID networks properly"), adjust
cfg80211_update_known_bss() to free the last beacon frame
elements only if they're not shared via the corresponding
'hidden_beacon_bss' pointer. |
In the Linux kernel, the following vulnerability has been resolved:
fs: writeback: fix use-after-free in __mark_inode_dirty()
An use-after-free issue occurred when __mark_inode_dirty() get the
bdi_writeback that was in the progress of switching.
CPU: 1 PID: 562 Comm: systemd-random- Not tainted 6.6.56-gb4403bd46a8e #1
......
pstate: 60400005 (nZCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
pc : __mark_inode_dirty+0x124/0x418
lr : __mark_inode_dirty+0x118/0x418
sp : ffffffc08c9dbbc0
........
Call trace:
__mark_inode_dirty+0x124/0x418
generic_update_time+0x4c/0x60
file_modified+0xcc/0xd0
ext4_buffered_write_iter+0x58/0x124
ext4_file_write_iter+0x54/0x704
vfs_write+0x1c0/0x308
ksys_write+0x74/0x10c
__arm64_sys_write+0x1c/0x28
invoke_syscall+0x48/0x114
el0_svc_common.constprop.0+0xc0/0xe0
do_el0_svc+0x1c/0x28
el0_svc+0x40/0xe4
el0t_64_sync_handler+0x120/0x12c
el0t_64_sync+0x194/0x198
Root cause is:
systemd-random-seed kworker
----------------------------------------------------------------------
___mark_inode_dirty inode_switch_wbs_work_fn
spin_lock(&inode->i_lock);
inode_attach_wb
locked_inode_to_wb_and_lock_list
get inode->i_wb
spin_unlock(&inode->i_lock);
spin_lock(&wb->list_lock)
spin_lock(&inode->i_lock)
inode_io_list_move_locked
spin_unlock(&wb->list_lock)
spin_unlock(&inode->i_lock)
spin_lock(&old_wb->list_lock)
inode_do_switch_wbs
spin_lock(&inode->i_lock)
inode->i_wb = new_wb
spin_unlock(&inode->i_lock)
spin_unlock(&old_wb->list_lock)
wb_put_many(old_wb, nr_switched)
cgwb_release
old wb released
wb_wakeup_delayed() accesses wb,
then trigger the use-after-free
issue
Fix this race condition by holding inode spinlock until
wb_wakeup_delayed() finished. |
Cross-Site Request Forgery (CSRF) vulnerability in the server (license) registration page in Liferay Portal 7.4.0 through 7.4.3.111, and older unsupported versions, and Liferay DXP 2023.Q4.0 through 2023.Q4.7, 2023.Q3.1 through 2023.Q3.9, 7.4 GA through update 92, and older unsupported versions allows remote attackers to register a server license via the 'orderUuid' parameter. |
CWP (aka Control Web Panel or CentOS Web Panel) before 0.9.8.1205 allows unauthenticated remote code execution via shell metacharacters in the t_total parameter in a filemanager changePerm request. A valid non-root username must be known. |
Paracrawl KeOPs v2 is vulnerable to Cross Site Scripting (XSS) in error.php. |
Tenda AC6 router firmware 15.03.05.19 contains a command injection vulnerability in the formSetIptv function, which processes requests to the /goform/SetIPTVCfg web interface. When handling the list and vlanId parameters, the sub_ADBC0 helper function concatenates these user-supplied values into nvram set system commands using doSystemCmd, without validating or sanitizing special characters (e.g., ;, ", #). An unauthenticated or authenticated attacker can exploit this by submitting a crafted POST request, leading to arbitrary system command execution on the affected device. |
Tandoor Recipes 2.0.0-alpha-1, fixed in 2.0.0-alpha-2, is vulnerable to privilege escalation. This is due to the rework of the API, which resulted in the User Profile API Endpoint containing two boolean values indicating whether a user is staff or administrative. Consequently, any user can escalate their privileges to the highest level. |
A vulnerability was identified in huggingface LeRobot up to 0.3.3. Affected by this vulnerability is an unknown functionality of the file lerobot/common/robot_devices/robots/lekiwi_remote.py of the component ZeroMQ Socket Handler. The manipulation leads to missing authentication. The attack can only be initiated within the local network. The vendor was contacted early about this disclosure but did not respond in any way. |
Starch versions 0.14 and earlier generate session ids insecurely.
The default session id generator returns a SHA-1 hash seeded with a counter, the epoch time, the built-in rand function, the PID, and internal Perl reference addresses. The PID will come from a small set of numbers, and the epoch time may be guessed, if it is not leaked from the HTTP Date header. The built-in rand function is unsuitable for cryptographic usage.
Predicable session ids could allow an attacker to gain access to systems. |