| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amdgpu: add missing size check in amdgpu_debugfs_gprwave_read()
Avoid a possible buffer overflow if size is larger than 4K.
(cherry picked from commit f5d873f5825b40d886d03bd2aede91d4cf002434) |
| In the Linux kernel, the following vulnerability has been resolved:
dm cache: fix out-of-bounds access to the dirty bitset when resizing
dm-cache checks the dirty bits of the cache blocks to be dropped when
shrinking the fast device, but an index bug in bitset iteration causes
out-of-bounds access.
Reproduce steps:
1. create a cache device of 1024 cache blocks (128 bytes dirty bitset)
dmsetup create cmeta --table "0 8192 linear /dev/sdc 0"
dmsetup create cdata --table "0 131072 linear /dev/sdc 8192"
dmsetup create corig --table "0 524288 linear /dev/sdc 262144"
dd if=/dev/zero of=/dev/mapper/cmeta bs=4k count=1 oflag=direct
dmsetup create cache --table "0 524288 cache /dev/mapper/cmeta \
/dev/mapper/cdata /dev/mapper/corig 128 2 metadata2 writethrough smq 0"
2. shrink the fast device to 512 cache blocks, triggering out-of-bounds
access to the dirty bitset (offset 0x80)
dmsetup suspend cache
dmsetup reload cdata --table "0 65536 linear /dev/sdc 8192"
dmsetup resume cdata
dmsetup resume cache
KASAN reports:
BUG: KASAN: vmalloc-out-of-bounds in cache_preresume+0x269/0x7b0
Read of size 8 at addr ffffc900000f3080 by task dmsetup/131
(...snip...)
The buggy address belongs to the virtual mapping at
[ffffc900000f3000, ffffc900000f5000) created by:
cache_ctr+0x176a/0x35f0
(...snip...)
Memory state around the buggy address:
ffffc900000f2f80: f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8
ffffc900000f3000: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
>ffffc900000f3080: f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8
^
ffffc900000f3100: f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8
ffffc900000f3180: f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8
Fix by making the index post-incremented. |
| In the Linux kernel, the following vulnerability has been resolved:
dm cache: fix potential out-of-bounds access on the first resume
Out-of-bounds access occurs if the fast device is expanded unexpectedly
before the first-time resume of the cache table. This happens because
expanding the fast device requires reloading the cache table for
cache_create to allocate new in-core data structures that fit the new
size, and the check in cache_preresume is not performed during the
first resume, leading to the issue.
Reproduce steps:
1. prepare component devices:
dmsetup create cmeta --table "0 8192 linear /dev/sdc 0"
dmsetup create cdata --table "0 65536 linear /dev/sdc 8192"
dmsetup create corig --table "0 524288 linear /dev/sdc 262144"
dd if=/dev/zero of=/dev/mapper/cmeta bs=4k count=1 oflag=direct
2. load a cache table of 512 cache blocks, and deliberately expand the
fast device before resuming the cache, making the in-core data
structures inadequate.
dmsetup create cache --notable
dmsetup reload cache --table "0 524288 cache /dev/mapper/cmeta \
/dev/mapper/cdata /dev/mapper/corig 128 2 metadata2 writethrough smq 0"
dmsetup reload cdata --table "0 131072 linear /dev/sdc 8192"
dmsetup resume cdata
dmsetup resume cache
3. suspend the cache to write out the in-core dirty bitset and hint
array, leading to out-of-bounds access to the dirty bitset at offset
0x40:
dmsetup suspend cache
KASAN reports:
BUG: KASAN: vmalloc-out-of-bounds in is_dirty_callback+0x2b/0x80
Read of size 8 at addr ffffc90000085040 by task dmsetup/90
(...snip...)
The buggy address belongs to the virtual mapping at
[ffffc90000085000, ffffc90000087000) created by:
cache_ctr+0x176a/0x35f0
(...snip...)
Memory state around the buggy address:
ffffc90000084f00: f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8
ffffc90000084f80: f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8
>ffffc90000085000: 00 00 00 00 00 00 00 00 f8 f8 f8 f8 f8 f8 f8 f8
^
ffffc90000085080: f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8
ffffc90000085100: f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8
Fix by checking the size change on the first resume. |
| In the Linux kernel, the following vulnerability has been resolved:
usb: typec: fix potential out of bounds in ucsi_ccg_update_set_new_cam_cmd()
The "*cmd" variable can be controlled by the user via debugfs. That means
"new_cam" can be as high as 255 while the size of the uc->updated[] array
is UCSI_MAX_ALTMODES (30).
The call tree is:
ucsi_cmd() // val comes from simple_attr_write_xsigned()
-> ucsi_send_command()
-> ucsi_send_command_common()
-> ucsi_run_command() // calls ucsi->ops->sync_control()
-> ucsi_ccg_sync_control() |
| In the Linux kernel, the following vulnerability has been resolved:
netdevsim: Add trailing zero to terminate the string in nsim_nexthop_bucket_activity_write()
This was found by a static analyzer.
We should not forget the trailing zero after copy_from_user()
if we will further do some string operations, sscanf() in this
case. Adding a trailing zero will ensure that the function
performs properly. |
| In the Linux kernel, the following vulnerability has been resolved:
fs/ntfs3: Check if more than chunk-size bytes are written
A incorrectly formatted chunk may decompress into
more than LZNT_CHUNK_SIZE bytes and a index out of bounds
will occur in s_max_off. |
| In the Linux kernel, the following vulnerability has been resolved:
RDMA/bnxt_re: Fix a bug while setting up Level-2 PBL pages
Avoid memory corruption while setting up Level-2 PBL pages for the non MR
resources when num_pages > 256K.
There will be a single PDE page address (contiguous pages in the case of >
PAGE_SIZE), but, current logic assumes multiple pages, leading to invalid
memory access after 256K PBL entries in the PDE. |
| In the Linux kernel, the following vulnerability has been resolved:
tracing: Consider the NULL character when validating the event length
strlen() returns a string length excluding the null byte. If the string
length equals to the maximum buffer length, the buffer will have no
space for the NULL terminating character.
This commit checks this condition and returns failure for it. |
| In the Linux kernel, the following vulnerability has been resolved:
net: wwan: fix global oob in wwan_rtnl_policy
The variable wwan_rtnl_link_ops assign a *bigger* maxtype which leads to
a global out-of-bounds read when parsing the netlink attributes. Exactly
same bug cause as the oob fixed in commit b33fb5b801c6 ("net: qualcomm:
rmnet: fix global oob in rmnet_policy").
==================================================================
BUG: KASAN: global-out-of-bounds in validate_nla lib/nlattr.c:388 [inline]
BUG: KASAN: global-out-of-bounds in __nla_validate_parse+0x19d7/0x29a0 lib/nlattr.c:603
Read of size 1 at addr ffffffff8b09cb60 by task syz.1.66276/323862
CPU: 0 PID: 323862 Comm: syz.1.66276 Not tainted 6.1.70 #1
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.13.0-1ubuntu1.1 04/01/2014
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:88 [inline]
dump_stack_lvl+0x177/0x231 lib/dump_stack.c:106
print_address_description mm/kasan/report.c:284 [inline]
print_report+0x14f/0x750 mm/kasan/report.c:395
kasan_report+0x139/0x170 mm/kasan/report.c:495
validate_nla lib/nlattr.c:388 [inline]
__nla_validate_parse+0x19d7/0x29a0 lib/nlattr.c:603
__nla_parse+0x3c/0x50 lib/nlattr.c:700
nla_parse_nested_deprecated include/net/netlink.h:1269 [inline]
__rtnl_newlink net/core/rtnetlink.c:3514 [inline]
rtnl_newlink+0x7bc/0x1fd0 net/core/rtnetlink.c:3623
rtnetlink_rcv_msg+0x794/0xef0 net/core/rtnetlink.c:6122
netlink_rcv_skb+0x1de/0x420 net/netlink/af_netlink.c:2508
netlink_unicast_kernel net/netlink/af_netlink.c:1326 [inline]
netlink_unicast+0x74b/0x8c0 net/netlink/af_netlink.c:1352
netlink_sendmsg+0x882/0xb90 net/netlink/af_netlink.c:1874
sock_sendmsg_nosec net/socket.c:716 [inline]
__sock_sendmsg net/socket.c:728 [inline]
____sys_sendmsg+0x5cc/0x8f0 net/socket.c:2499
___sys_sendmsg+0x21c/0x290 net/socket.c:2553
__sys_sendmsg net/socket.c:2582 [inline]
__do_sys_sendmsg net/socket.c:2591 [inline]
__se_sys_sendmsg+0x19e/0x270 net/socket.c:2589
do_syscall_x64 arch/x86/entry/common.c:51 [inline]
do_syscall_64+0x45/0x90 arch/x86/entry/common.c:81
entry_SYSCALL_64_after_hwframe+0x63/0xcd
RIP: 0033:0x7f67b19a24ad
RSP: 002b:00007f67b17febb8 EFLAGS: 00000246 ORIG_RAX: 000000000000002e
RAX: ffffffffffffffda RBX: 00007f67b1b45f80 RCX: 00007f67b19a24ad
RDX: 0000000000000000 RSI: 0000000020005e40 RDI: 0000000000000004
RBP: 00007f67b1a1e01d R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000000
R13: 00007ffd2513764f R14: 00007ffd251376e0 R15: 00007f67b17fed40
</TASK>
The buggy address belongs to the variable:
wwan_rtnl_policy+0x20/0x40
The buggy address belongs to the physical page:
page:ffffea00002c2700 refcount:1 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0xb09c
flags: 0xfff00000001000(reserved|node=0|zone=1|lastcpupid=0x7ff)
raw: 00fff00000001000 ffffea00002c2708 ffffea00002c2708 0000000000000000
raw: 0000000000000000 0000000000000000 00000001ffffffff 0000000000000000
page dumped because: kasan: bad access detected
page_owner info is not present (never set?)
Memory state around the buggy address:
ffffffff8b09ca00: 05 f9 f9 f9 05 f9 f9 f9 00 01 f9 f9 00 01 f9 f9
ffffffff8b09ca80: 00 00 00 05 f9 f9 f9 f9 00 00 03 f9 f9 f9 f9 f9
>ffffffff8b09cb00: 00 00 00 00 05 f9 f9 f9 00 00 00 00 f9 f9 f9 f9
^
ffffffff8b09cb80: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
==================================================================
According to the comment of `nla_parse_nested_deprecated`, use correct size
`IFLA_WWAN_MAX` here to fix this issue. |
| In the Linux kernel, the following vulnerability has been resolved:
KVM: nSVM: Ignore nCR3[4:0] when loading PDPTEs from memory
Ignore nCR3[4:0] when loading PDPTEs from memory for nested SVM, as bits
4:0 of CR3 are ignored when PAE paging is used, and thus VMRUN doesn't
enforce 32-byte alignment of nCR3.
In the absolute worst case scenario, failure to ignore bits 4:0 can result
in an out-of-bounds read, e.g. if the target page is at the end of a
memslot, and the VMM isn't using guard pages.
Per the APM:
The CR3 register points to the base address of the page-directory-pointer
table. The page-directory-pointer table is aligned on a 32-byte boundary,
with the low 5 address bits 4:0 assumed to be 0.
And the SDM's much more explicit:
4:0 Ignored
Note, KVM gets this right when loading PDPTRs, it's only the nSVM flow
that is broken. |
| In the Linux kernel, the following vulnerability has been resolved:
parport: Proper fix for array out-of-bounds access
The recent fix for array out-of-bounds accesses replaced sprintf()
calls blindly with snprintf(). However, since snprintf() returns the
would-be-printed size, not the actually output size, the length
calculation can still go over the given limit.
Use scnprintf() instead of snprintf(), which returns the actually
output letters, for addressing the potential out-of-bounds access
properly. |
| In the Linux kernel, the following vulnerability has been resolved:
device-dax: correct pgoff align in dax_set_mapping()
pgoff should be aligned using ALIGN_DOWN() instead of ALIGN(). Otherwise,
vmf->address not aligned to fault_size will be aligned to the next
alignment, that can result in memory failure getting the wrong address.
It's a subtle situation that only can be observed in
page_mapped_in_vma() after the page is page fault handled by
dev_dax_huge_fault. Generally, there is little chance to perform
page_mapped_in_vma in dev-dax's page unless in specific error injection
to the dax device to trigger an MCE - memory-failure. In that case,
page_mapped_in_vma() will be triggered to determine which task is
accessing the failure address and kill that task in the end.
We used self-developed dax device (which is 2M aligned mapping) , to
perform error injection to random address. It turned out that error
injected to non-2M-aligned address was causing endless MCE until panic.
Because page_mapped_in_vma() kept resulting wrong address and the task
accessing the failure address was never killed properly:
[ 3783.719419] Memory failure: 0x200c9742: recovery action for dax page:
Recovered
[ 3784.049006] mce: Uncorrected hardware memory error in user-access at
200c9742380
[ 3784.049190] Memory failure: 0x200c9742: recovery action for dax page:
Recovered
[ 3784.448042] mce: Uncorrected hardware memory error in user-access at
200c9742380
[ 3784.448186] Memory failure: 0x200c9742: recovery action for dax page:
Recovered
[ 3784.792026] mce: Uncorrected hardware memory error in user-access at
200c9742380
[ 3784.792179] Memory failure: 0x200c9742: recovery action for dax page:
Recovered
[ 3785.162502] mce: Uncorrected hardware memory error in user-access at
200c9742380
[ 3785.162633] Memory failure: 0x200c9742: recovery action for dax page:
Recovered
[ 3785.461116] mce: Uncorrected hardware memory error in user-access at
200c9742380
[ 3785.461247] Memory failure: 0x200c9742: recovery action for dax page:
Recovered
[ 3785.764730] mce: Uncorrected hardware memory error in user-access at
200c9742380
[ 3785.764859] Memory failure: 0x200c9742: recovery action for dax page:
Recovered
[ 3786.042128] mce: Uncorrected hardware memory error in user-access at
200c9742380
[ 3786.042259] Memory failure: 0x200c9742: recovery action for dax page:
Recovered
[ 3786.464293] mce: Uncorrected hardware memory error in user-access at
200c9742380
[ 3786.464423] Memory failure: 0x200c9742: recovery action for dax page:
Recovered
[ 3786.818090] mce: Uncorrected hardware memory error in user-access at
200c9742380
[ 3786.818217] Memory failure: 0x200c9742: recovery action for dax page:
Recovered
[ 3787.085297] mce: Uncorrected hardware memory error in user-access at
200c9742380
[ 3787.085424] Memory failure: 0x200c9742: recovery action for dax page:
Recovered
It took us several weeks to pinpoint this problem, but we eventually
used bpftrace to trace the page fault and mce address and successfully
identified the issue.
Joao added:
; Likely we never reproduce in production because we always pin
: device-dax regions in the region align they provide (Qemu does
: similarly with prealloc in hugetlb/file backed memory). I think this
: bug requires that we touch *unpinned* device-dax regions unaligned to
: the device-dax selected alignment (page size i.e. 4K/2M/1G) |
| In the Linux kernel, the following vulnerability has been resolved:
ext4: dax: fix overflowing extents beyond inode size when partially writing
The dax_iomap_rw() does two things in each iteration: map written blocks
and copy user data to blocks. If the process is killed by user(See signal
handling in dax_iomap_iter()), the copied data will be returned and added
on inode size, which means that the length of written extents may exceed
the inode size, then fsck will fail. An example is given as:
dd if=/dev/urandom of=file bs=4M count=1
dax_iomap_rw
iomap_iter // round 1
ext4_iomap_begin
ext4_iomap_alloc // allocate 0~2M extents(written flag)
dax_iomap_iter // copy 2M data
iomap_iter // round 2
iomap_iter_advance
iter->pos += iter->processed // iter->pos = 2M
ext4_iomap_begin
ext4_iomap_alloc // allocate 2~4M extents(written flag)
dax_iomap_iter
fatal_signal_pending
done = iter->pos - iocb->ki_pos // done = 2M
ext4_handle_inode_extension
ext4_update_inode_size // inode size = 2M
fsck reports: Inode 13, i_size is 2097152, should be 4194304. Fix?
Fix the problem by truncating extents if the written length is smaller
than expected. |
| In the Linux kernel, the following vulnerability has been resolved:
ALSA: asihpi: Fix potential OOB array access
ASIHPI driver stores some values in the static array upon a response
from the driver, and its index depends on the firmware. We shouldn't
trust it blindly.
This patch adds a sanity check of the array index to fit in the array
size. |
| Memory handling issue in editcap could cause denial of service via crafted capture file |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: Fix index out of bounds in DCN30 color transformation
This commit addresses a potential index out of bounds issue in the
`cm3_helper_translate_curve_to_hw_format` function in the DCN30 color
management module. The issue could occur when the index 'i' exceeds the
number of transfer function points (TRANSFER_FUNC_POINTS).
The fix adds a check to ensure 'i' is within bounds before accessing the
transfer function points. If 'i' is out of bounds, the function returns
false to indicate an error.
drivers/gpu/drm/amd/amdgpu/../display/dc/dcn30/dcn30_cm_common.c:180 cm3_helper_translate_curve_to_hw_format() error: buffer overflow 'output_tf->tf_pts.red' 1025 <= s32max
drivers/gpu/drm/amd/amdgpu/../display/dc/dcn30/dcn30_cm_common.c:181 cm3_helper_translate_curve_to_hw_format() error: buffer overflow 'output_tf->tf_pts.green' 1025 <= s32max
drivers/gpu/drm/amd/amdgpu/../display/dc/dcn30/dcn30_cm_common.c:182 cm3_helper_translate_curve_to_hw_format() error: buffer overflow 'output_tf->tf_pts.blue' 1025 <= s32max |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: ath11k: fix array out-of-bound access in SoC stats
Currently, the ath11k_soc_dp_stats::hal_reo_error array is defined with a
maximum size of DP_REO_DST_RING_MAX. However, the ath11k_dp_process_rx()
function access ath11k_soc_dp_stats::hal_reo_error using the REO
destination SRNG ring ID, which is incorrect. SRNG ring ID differ from
normal ring ID, and this usage leads to out-of-bounds array access. To fix
this issue, modify ath11k_dp_process_rx() to use the normal ring ID
directly instead of the SRNG ring ID to avoid out-of-bounds array access.
Tested-on: QCN9074 hw1.0 PCI WLAN.HK.2.7.0.1-01744-QCAHKSWPL_SILICONZ-1 |
| In the Linux kernel, the following vulnerability has been resolved:
jfs: check if leafidx greater than num leaves per dmap tree
syzbot report a out of bounds in dbSplit, it because dmt_leafidx greater
than num leaves per dmap tree, add a checking for dmt_leafidx in dbFindLeaf.
Shaggy:
Modified sanity check to apply to control pages as well as leaf pages. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: Fix index out of bounds in DCN30 degamma hardware format translation
This commit addresses a potential index out of bounds issue in the
`cm3_helper_translate_curve_to_degamma_hw_format` function in the DCN30
color management module. The issue could occur when the index 'i'
exceeds the number of transfer function points (TRANSFER_FUNC_POINTS).
The fix adds a check to ensure 'i' is within bounds before accessing the
transfer function points. If 'i' is out of bounds, the function returns
false to indicate an error.
Reported by smatch:
drivers/gpu/drm/amd/amdgpu/../display/dc/dcn30/dcn30_cm_common.c:338 cm3_helper_translate_curve_to_degamma_hw_format() error: buffer overflow 'output_tf->tf_pts.red' 1025 <= s32max
drivers/gpu/drm/amd/amdgpu/../display/dc/dcn30/dcn30_cm_common.c:339 cm3_helper_translate_curve_to_degamma_hw_format() error: buffer overflow 'output_tf->tf_pts.green' 1025 <= s32max
drivers/gpu/drm/amd/amdgpu/../display/dc/dcn30/dcn30_cm_common.c:340 cm3_helper_translate_curve_to_degamma_hw_format() error: buffer overflow 'output_tf->tf_pts.blue' 1025 <= s32max |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: Fix index out of bounds in degamma hardware format translation
Fixes index out of bounds issue in
`cm_helper_translate_curve_to_degamma_hw_format` function. The issue
could occur when the index 'i' exceeds the number of transfer function
points (TRANSFER_FUNC_POINTS).
The fix adds a check to ensure 'i' is within bounds before accessing the
transfer function points. If 'i' is out of bounds the function returns
false to indicate an error.
Reported by smatch:
drivers/gpu/drm/amd/amdgpu/../display/dc/dcn10/dcn10_cm_common.c:594 cm_helper_translate_curve_to_degamma_hw_format() error: buffer overflow 'output_tf->tf_pts.red' 1025 <= s32max
drivers/gpu/drm/amd/amdgpu/../display/dc/dcn10/dcn10_cm_common.c:595 cm_helper_translate_curve_to_degamma_hw_format() error: buffer overflow 'output_tf->tf_pts.green' 1025 <= s32max
drivers/gpu/drm/amd/amdgpu/../display/dc/dcn10/dcn10_cm_common.c:596 cm_helper_translate_curve_to_degamma_hw_format() error: buffer overflow 'output_tf->tf_pts.blue' 1025 <= s32max |