| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
iio: adc: ti-ads1298: Add NULL check in ads1298_init
devm_kasprintf() can return a NULL pointer on failure. A check on the
return value of such a call in ads1298_init() is missing. Add it. |
| In the Linux kernel, the following vulnerability has been resolved:
fgraph: Add READ_ONCE() when accessing fgraph_array[]
In __ftrace_return_to_handler(), a loop iterates over the fgraph_array[]
elements, which are fgraph_ops. The loop checks if an element is a
fgraph_stub to prevent using a fgraph_stub afterward.
However, if the compiler reloads fgraph_array[] after this check, it might
race with an update to fgraph_array[] that introduces a fgraph_stub. This
could result in the stub being processed, but the stub contains a null
"func_hash" field, leading to a NULL pointer dereference.
To ensure that the gops compared against the fgraph_stub matches the gops
processed later, add a READ_ONCE(). A similar patch appears in commit
63a8dfb ("function_graph: Add READ_ONCE() when accessing fgraph_array[]"). |
| In the Linux kernel, the following vulnerability has been resolved:
gve: guard XSK operations on the existence of queues
This patch predicates the enabling and disabling of XSK pools on the
existence of queues. As it stands, if the interface is down, disabling
or enabling XSK pools would result in a crash, as the RX queue pointer
would be NULL. XSK pool registration will occur as part of the next
interface up.
Similarly, xsk_wakeup needs be guarded against queues disappearing
while the function is executing, so a check against the
GVE_PRIV_FLAGS_NAPI_ENABLED flag is added to synchronize with the
disabling of the bit and the synchronize_net() in gve_turndown. |
| In the Linux kernel, the following vulnerability has been resolved:
nfs: Fix oops in nfs_netfs_init_request() when copying to cache
When netfslib wants to copy some data that has just been read on behalf of
nfs, it creates a new write request and calls nfs_netfs_init_request() to
initialise it, but with a NULL file pointer. This causes
nfs_file_open_context() to oops - however, we don't actually need the nfs
context as we're only going to write to the cache.
Fix this by just returning if we aren't given a file pointer and emit a
warning if the request was for something other than copy-to-cache.
Further, fix nfs_netfs_free_request() so that it doesn't try to free the
context if the pointer is NULL. |
| In the Linux kernel, the following vulnerability has been resolved:
usb: typec: tcpci: fix NULL pointer issue on shared irq case
The tcpci_irq() may meet below NULL pointer dereference issue:
[ 2.641851] Unable to handle kernel NULL pointer dereference at virtual address 0000000000000010
[ 2.641951] status 0x1, 0x37f
[ 2.650659] Mem abort info:
[ 2.656490] ESR = 0x0000000096000004
[ 2.660230] EC = 0x25: DABT (current EL), IL = 32 bits
[ 2.665532] SET = 0, FnV = 0
[ 2.668579] EA = 0, S1PTW = 0
[ 2.671715] FSC = 0x04: level 0 translation fault
[ 2.676584] Data abort info:
[ 2.679459] ISV = 0, ISS = 0x00000004, ISS2 = 0x00000000
[ 2.684936] CM = 0, WnR = 0, TnD = 0, TagAccess = 0
[ 2.689980] GCS = 0, Overlay = 0, DirtyBit = 0, Xs = 0
[ 2.695284] [0000000000000010] user address but active_mm is swapper
[ 2.701632] Internal error: Oops: 0000000096000004 [#1] PREEMPT SMP
[ 2.707883] Modules linked in:
[ 2.710936] CPU: 1 UID: 0 PID: 87 Comm: irq/111-2-0051 Not tainted 6.12.0-rc6-06316-g7f63786ad3d1-dirty #4
[ 2.720570] Hardware name: NXP i.MX93 11X11 EVK board (DT)
[ 2.726040] pstate: 60400009 (nZCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
[ 2.732989] pc : tcpci_irq+0x38/0x318
[ 2.736647] lr : _tcpci_irq+0x14/0x20
[ 2.740295] sp : ffff80008324bd30
[ 2.743597] x29: ffff80008324bd70 x28: ffff800080107894 x27: ffff800082198f70
[ 2.750721] x26: ffff0000050e6680 x25: ffff000004d172ac x24: ffff0000050f0000
[ 2.757845] x23: ffff000004d17200 x22: 0000000000000001 x21: ffff0000050f0000
[ 2.764969] x20: ffff000004d17200 x19: 0000000000000000 x18: 0000000000000001
[ 2.772093] x17: 0000000000000000 x16: ffff80008183d8a0 x15: ffff00007fbab040
[ 2.779217] x14: ffff00007fb918c0 x13: 0000000000000000 x12: 000000000000017a
[ 2.786341] x11: 0000000000000001 x10: 0000000000000a90 x9 : ffff80008324bd00
[ 2.793465] x8 : ffff0000050f0af0 x7 : ffff00007fbaa840 x6 : 0000000000000031
[ 2.800589] x5 : 000000000000017a x4 : 0000000000000002 x3 : 0000000000000002
[ 2.807713] x2 : ffff80008324bd3a x1 : 0000000000000010 x0 : 0000000000000000
[ 2.814838] Call trace:
[ 2.817273] tcpci_irq+0x38/0x318
[ 2.820583] _tcpci_irq+0x14/0x20
[ 2.823885] irq_thread_fn+0x2c/0xa8
[ 2.827456] irq_thread+0x16c/0x2f4
[ 2.830940] kthread+0x110/0x114
[ 2.834164] ret_from_fork+0x10/0x20
[ 2.837738] Code: f9426420 f9001fe0 d2800000 52800201 (f9400a60)
This may happen on shared irq case. Such as two Type-C ports share one
irq. After the first port finished tcpci_register_port(), it may trigger
interrupt. However, if the interrupt comes by chance the 2nd port finishes
devm_request_threaded_irq(), the 2nd port interrupt handler will run at
first. Then the above issue happens due to tcpci is still a NULL pointer
in tcpci_irq() when dereference to regmap.
devm_request_threaded_irq()
<-- port1 irq comes
disable_irq(client->irq);
tcpci_register_port()
This will restore the logic to the state before commit (77e85107a771 "usb:
typec: tcpci: support edge irq").
However, moving tcpci_register_port() earlier creates a problem when use
edge irq because tcpci_init() will be called before
devm_request_threaded_irq(). The tcpci_init() writes the ALERT_MASK to
the hardware to tell it to start generating interrupts but we're not ready
to deal with them yet, then the ALERT events may be missed and ALERT line
will not recover to high level forever. To avoid the issue, this will also
set ALERT_MASK register after devm_request_threaded_irq() return. |
| In the Linux kernel, the following vulnerability has been resolved:
mm/page_alloc: don't call pfn_to_page() on possibly non-existent PFN in split_large_buddy()
In split_large_buddy(), we might call pfn_to_page() on a PFN that might
not exist. In corner cases, such as when freeing the highest pageblock in
the last memory section, this could result with CONFIG_SPARSEMEM &&
!CONFIG_SPARSEMEM_EXTREME in __pfn_to_section() returning NULL and and
__section_mem_map_addr() dereferencing that NULL pointer.
Let's fix it, and avoid doing a pfn_to_page() call for the first
iteration, where we already have the page.
So far this was found by code inspection, but let's just CC stable as the
fix is easy. |
| In the Linux kernel, the following vulnerability has been resolved:
phy: rockchip: samsung-hdptx: Set drvdata before enabling runtime PM
In some cases, rk_hdptx_phy_runtime_resume() may be invoked before
platform_set_drvdata() is executed in ->probe(), leading to a NULL
pointer dereference when using the return of dev_get_drvdata().
Ensure platform_set_drvdata() is called before devm_pm_runtime_enable(). |
| In the Linux kernel, the following vulnerability has been resolved:
ACPI: x86: Add adev NULL check to acpi_quirk_skip_serdev_enumeration()
acpi_dev_hid_match() does not check for adev == NULL, dereferencing
it unconditional.
Add a check for adev being NULL before calling acpi_dev_hid_match().
At the moment acpi_quirk_skip_serdev_enumeration() is never called with
a controller_parent without an ACPI companion, but better safe than sorry. |
| In the Linux kernel, the following vulnerability has been resolved:
kunit: Fix potential null dereference in kunit_device_driver_test()
kunit_kzalloc() may return a NULL pointer, dereferencing it without
NULL check may lead to NULL dereference.
Add a NULL check for test_state. |
| In the Linux kernel, the following vulnerability has been resolved:
net/9p/usbg: fix handling of the failed kzalloc() memory allocation
On the linux-next, next-20241108 vanilla kernel, the coccinelle tool gave the
following error report:
./net/9p/trans_usbg.c:912:5-11: ERROR: allocation function on line 911 returns
NULL not ERR_PTR on failure
kzalloc() failure is fixed to handle the NULL return case on the memory exhaustion. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/panel: himax-hx83102: Add a check to prevent NULL pointer dereference
drm_mode_duplicate() could return NULL due to lack of memory,
which will then call NULL pointer dereference. Add a check to
prevent it. |
| In the Linux kernel, the following vulnerability has been resolved:
bpf: Mark raw_tp arguments with PTR_MAYBE_NULL
Arguments to a raw tracepoint are tagged as trusted, which carries the
semantics that the pointer will be non-NULL. However, in certain cases,
a raw tracepoint argument may end up being NULL. More context about this
issue is available in [0].
Thus, there is a discrepancy between the reality, that raw_tp arguments
can actually be NULL, and the verifier's knowledge, that they are never
NULL, causing explicit NULL checks to be deleted, and accesses to such
pointers potentially crashing the kernel.
To fix this, mark raw_tp arguments as PTR_MAYBE_NULL, and then special
case the dereference and pointer arithmetic to permit it, and allow
passing them into helpers/kfuncs; these exceptions are made for raw_tp
programs only. Ensure that we don't do this when ref_obj_id > 0, as in
that case this is an acquired object and doesn't need such adjustment.
The reason we do mask_raw_tp_trusted_reg logic is because other will
recheck in places whether the register is a trusted_reg, and then
consider our register as untrusted when detecting the presence of the
PTR_MAYBE_NULL flag.
To allow safe dereference, we enable PROBE_MEM marking when we see loads
into trusted pointers with PTR_MAYBE_NULL.
While trusted raw_tp arguments can also be passed into helpers or kfuncs
where such broken assumption may cause issues, a future patch set will
tackle their case separately, as PTR_TO_BTF_ID (without PTR_TRUSTED) can
already be passed into helpers and causes similar problems. Thus, they
are left alone for now.
It is possible that these checks also permit passing non-raw_tp args
that are trusted PTR_TO_BTF_ID with null marking. In such a case,
allowing dereference when pointer is NULL expands allowed behavior, so
won't regress existing programs, and the case of passing these into
helpers is the same as above and will be dealt with later.
Also update the failure case in tp_btf_nullable selftest to capture the
new behavior, as the verifier will no longer cause an error when
directly dereference a raw tracepoint argument marked as __nullable.
[0]: https://lore.kernel.org/bpf/ZrCZS6nisraEqehw@jlelli-thinkpadt14gen4.remote.csb |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amdgpu: Fix the memory allocation issue in amdgpu_discovery_get_nps_info()
Fix two issues with memory allocation in amdgpu_discovery_get_nps_info()
for mem_ranges:
- Add a check for allocation failure to avoid dereferencing a null
pointer.
- As suggested by Christophe, use kvcalloc() for memory allocation,
which checks for multiplication overflow.
Additionally, assign the output parameters nps_type and range_cnt after
the kvcalloc() call to prevent modifying the output parameters in case
of an error return. |
| In the Linux kernel, the following vulnerability has been resolved:
ALSA: core: Fix possible NULL dereference caused by kunit_kzalloc()
kunit_kzalloc() may return a NULL pointer, dereferencing it without
NULL check may lead to NULL dereference.
Add NULL checks for all the kunit_kzalloc() in sound_kunit.c |
| In the Linux kernel, the following vulnerability has been resolved:
irqchip/riscv-aplic: Prevent crash when MSI domain is missing
If the APLIC driver is probed before the IMSIC driver, the parent MSI
domain will be missing, which causes a NULL pointer dereference in
msi_create_device_irq_domain().
Avoid this by deferring probe until the parent MSI domain is available. Use
dev_err_probe() to avoid printing an error message when returning
-EPROBE_DEFER. |
| In the Linux kernel, the following vulnerability has been resolved:
riscv: mm: Do not call pmd dtor on vmemmap page table teardown
The vmemmap's, which is used for RV64 with SPARSEMEM_VMEMMAP, page
tables are populated using pmd (page middle directory) hugetables.
However, the pmd allocation is not using the generic mechanism used by
the VMA code (e.g. pmd_alloc()), or the RISC-V specific
create_pgd_mapping()/alloc_pmd_late(). Instead, the vmemmap page table
code allocates a page, and calls vmemmap_set_pmd(). This results in
that the pmd ctor is *not* called, nor would it make sense to do so.
Now, when tearing down a vmemmap page table pmd, the cleanup code
would unconditionally, and incorrectly call the pmd dtor, which
results in a crash (best case).
This issue was found when running the HMM selftests:
| tools/testing/selftests/mm# ./test_hmm.sh smoke
| ... # when unloading the test_hmm.ko module
| page: refcount:1 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x10915b
| flags: 0x1000000000000000(node=0|zone=1)
| raw: 1000000000000000 0000000000000000 dead000000000122 0000000000000000
| raw: 0000000000000000 0000000000000000 00000001ffffffff 0000000000000000
| page dumped because: VM_BUG_ON_PAGE(ptdesc->pmd_huge_pte)
| ------------[ cut here ]------------
| kernel BUG at include/linux/mm.h:3080!
| Kernel BUG [#1]
| Modules linked in: test_hmm(-) sch_fq_codel fuse drm drm_panel_orientation_quirks backlight dm_mod
| CPU: 1 UID: 0 PID: 514 Comm: modprobe Tainted: G W 6.12.0-00982-gf2a4f1682d07 #2
| Tainted: [W]=WARN
| Hardware name: riscv-virtio qemu/qemu, BIOS 2024.10 10/01/2024
| epc : remove_pgd_mapping+0xbec/0x1070
| ra : remove_pgd_mapping+0xbec/0x1070
| epc : ffffffff80010a68 ra : ffffffff80010a68 sp : ff20000000a73940
| gp : ffffffff827b2d88 tp : ff6000008785da40 t0 : ffffffff80fbce04
| t1 : 0720072007200720 t2 : 706d756420656761 s0 : ff20000000a73a50
| s1 : ff6000008915cff8 a0 : 0000000000000039 a1 : 0000000000000008
| a2 : ff600003fff0de20 a3 : 0000000000000000 a4 : 0000000000000000
| a5 : 0000000000000000 a6 : c0000000ffffefff a7 : ffffffff824469b8
| s2 : ff1c0000022456c0 s3 : ff1ffffffdbfffff s4 : ff6000008915c000
| s5 : ff6000008915c000 s6 : ff6000008915c000 s7 : ff1ffffffdc00000
| s8 : 0000000000000001 s9 : ff1ffffffdc00000 s10: ffffffff819a31f0
| s11: ffffffffffffffff t3 : ffffffff8000c950 t4 : ff60000080244f00
| t5 : ff60000080244000 t6 : ff20000000a73708
| status: 0000000200000120 badaddr: ffffffff80010a68 cause: 0000000000000003
| [<ffffffff80010a68>] remove_pgd_mapping+0xbec/0x1070
| [<ffffffff80fd238e>] vmemmap_free+0x14/0x1e
| [<ffffffff8032e698>] section_deactivate+0x220/0x452
| [<ffffffff8032ef7e>] sparse_remove_section+0x4a/0x58
| [<ffffffff802f8700>] __remove_pages+0x7e/0xba
| [<ffffffff803760d8>] memunmap_pages+0x2bc/0x3fe
| [<ffffffff02a3ca28>] dmirror_device_remove_chunks+0x2ea/0x518 [test_hmm]
| [<ffffffff02a3e026>] hmm_dmirror_exit+0x3e/0x1018 [test_hmm]
| [<ffffffff80102c14>] __riscv_sys_delete_module+0x15a/0x2a6
| [<ffffffff80fd020c>] do_trap_ecall_u+0x1f2/0x266
| [<ffffffff80fde0a2>] _new_vmalloc_restore_context_a0+0xc6/0xd2
| Code: bf51 7597 0184 8593 76a5 854a 4097 0029 80e7 2c00 (9002) 7597
| ---[ end trace 0000000000000000 ]---
| Kernel panic - not syncing: Fatal exception in interrupt
Add a check to avoid calling the pmd dtor, if the calling context is
vmemmap_free(). |
| In the Linux kernel, the following vulnerability has been resolved:
iommu/vt-d: Fix qi_batch NULL pointer with nested parent domain
The qi_batch is allocated when assigning cache tag for a domain. While
for nested parent domain, it is missed. Hence, when trying to map pages
to the nested parent, NULL dereference occurred. Also, there is potential
memleak since there is no lock around domain->qi_batch allocation.
To solve it, add a helper for qi_batch allocation, and call it in both
the __cache_tag_assign_domain() and __cache_tag_assign_parent_domain().
BUG: kernel NULL pointer dereference, address: 0000000000000200
#PF: supervisor read access in kernel mode
#PF: error_code(0x0000) - not-present page
PGD 8104795067 P4D 0
Oops: Oops: 0000 [#1] PREEMPT SMP NOPTI
CPU: 223 UID: 0 PID: 4357 Comm: qemu-system-x86 Not tainted 6.13.0-rc1-00028-g4b50c3c3b998-dirty #2632
Call Trace:
? __die+0x24/0x70
? page_fault_oops+0x80/0x150
? do_user_addr_fault+0x63/0x7b0
? exc_page_fault+0x7c/0x220
? asm_exc_page_fault+0x26/0x30
? cache_tag_flush_range_np+0x13c/0x260
intel_iommu_iotlb_sync_map+0x1a/0x30
iommu_map+0x61/0xf0
batch_to_domain+0x188/0x250
iopt_area_fill_domains+0x125/0x320
? rcu_is_watching+0x11/0x50
iopt_map_pages+0x63/0x100
iopt_map_common.isra.0+0xa7/0x190
iopt_map_user_pages+0x6a/0x80
iommufd_ioas_map+0xcd/0x1d0
iommufd_fops_ioctl+0x118/0x1c0
__x64_sys_ioctl+0x93/0xc0
do_syscall_64+0x71/0x140
entry_SYSCALL_64_after_hwframe+0x76/0x7e |
| In the Linux kernel, the following vulnerability has been resolved:
drm/i915: Fix NULL pointer dereference in capture_engine
When the intel_context structure contains NULL,
it raises a NULL pointer dereference error in drm_info().
(cherry picked from commit 754302a5bc1bd8fd3b7d85c168b0a1af6d4bba4d) |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amdkfd: Dereference null return value
In the function pqm_uninit there is a call-assignment of "pdd =
kfd_get_process_device_data" which could be null, and this value was
later dereferenced without checking. |
| In the Linux kernel, the following vulnerability has been resolved:
net: enetc: Do not configure preemptible TCs if SIs do not support
Both ENETC PF and VF drivers share enetc_setup_tc_mqprio() to configure
MQPRIO. And enetc_setup_tc_mqprio() calls enetc_change_preemptible_tcs()
to configure preemptible TCs. However, only PF is able to configure
preemptible TCs. Because only PF has related registers, while VF does not
have these registers. So for VF, its hw->port pointer is NULL. Therefore,
VF will access an invalid pointer when accessing a non-existent register,
which will cause a crash issue. The simplified log is as follows.
root@ls1028ardb:~# tc qdisc add dev eno0vf0 parent root handle 100: \
mqprio num_tc 4 map 0 0 1 1 2 2 3 3 queues 1@0 1@1 1@2 1@3 hw 1
[ 187.290775] Unable to handle kernel paging request at virtual address 0000000000001f00
[ 187.424831] pc : enetc_mm_commit_preemptible_tcs+0x1c4/0x400
[ 187.430518] lr : enetc_mm_commit_preemptible_tcs+0x30c/0x400
[ 187.511140] Call trace:
[ 187.513588] enetc_mm_commit_preemptible_tcs+0x1c4/0x400
[ 187.518918] enetc_setup_tc_mqprio+0x180/0x214
[ 187.523374] enetc_vf_setup_tc+0x1c/0x30
[ 187.527306] mqprio_enable_offload+0x144/0x178
[ 187.531766] mqprio_init+0x3ec/0x668
[ 187.535351] qdisc_create+0x15c/0x488
[ 187.539023] tc_modify_qdisc+0x398/0x73c
[ 187.542958] rtnetlink_rcv_msg+0x128/0x378
[ 187.547064] netlink_rcv_skb+0x60/0x130
[ 187.550910] rtnetlink_rcv+0x18/0x24
[ 187.554492] netlink_unicast+0x300/0x36c
[ 187.558425] netlink_sendmsg+0x1a8/0x420
[ 187.606759] ---[ end trace 0000000000000000 ]---
In addition, some PFs also do not support configuring preemptible TCs,
such as eno1 and eno3 on LS1028A. It won't crash like it does for VFs,
but we should prevent these PFs from accessing these unimplemented
registers. |