Search Results (9710 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2025-25036 1 Jalios 1 Jcms 2025-11-19 6.8 Medium
Improper Restriction of XML External Entity Reference vulnerability in Jalios JPlatform allows XML Injection.This issue affects all versions of JPlatform 10 before 10.0.8 (SP8).
CVE-2025-38302 1 Linux 1 Linux Kernel 2025-11-19 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: block: don't use submit_bio_noacct_nocheck in blk_zone_wplug_bio_work Bios queued up in the zone write plug have already gone through all all preparation in the submit_bio path, including the freeze protection. Submitting them through submit_bio_noacct_nocheck duplicates the work and can can cause deadlocks when freezing a queue with pending bio write plugs. Go straight to ->submit_bio or blk_mq_submit_bio to bypass the superfluous extra freeze protection and checks.
CVE-2025-38388 1 Linux 1 Linux Kernel 2025-11-19 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: firmware: arm_ffa: Replace mutex with rwlock to avoid sleep in atomic context The current use of a mutex to protect the notifier hashtable accesses can lead to issues in the atomic context. It results in the below kernel warnings: | BUG: sleeping function called from invalid context at kernel/locking/mutex.c:258 | in_atomic(): 1, irqs_disabled(): 1, non_block: 0, pid: 9, name: kworker/0:0 | preempt_count: 1, expected: 0 | RCU nest depth: 0, expected: 0 | CPU: 0 UID: 0 PID: 9 Comm: kworker/0:0 Not tainted 6.14.0 #4 | Workqueue: ffa_pcpu_irq_notification notif_pcpu_irq_work_fn | Call trace: | show_stack+0x18/0x24 (C) | dump_stack_lvl+0x78/0x90 | dump_stack+0x18/0x24 | __might_resched+0x114/0x170 | __might_sleep+0x48/0x98 | mutex_lock+0x24/0x80 | handle_notif_callbacks+0x54/0xe0 | notif_get_and_handle+0x40/0x88 | generic_exec_single+0x80/0xc0 | smp_call_function_single+0xfc/0x1a0 | notif_pcpu_irq_work_fn+0x2c/0x38 | process_one_work+0x14c/0x2b4 | worker_thread+0x2e4/0x3e0 | kthread+0x13c/0x210 | ret_from_fork+0x10/0x20 To address this, replace the mutex with an rwlock to protect the notifier hashtable accesses. This ensures that read-side locking does not sleep and multiple readers can acquire the lock concurrently, avoiding unnecessary contention and potential deadlocks. Writer access remains exclusive, preserving correctness. This change resolves warnings from lockdep about potential sleep in atomic context.
CVE-2025-38373 1 Linux 1 Linux Kernel 2025-11-19 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: IB/mlx5: Fix potential deadlock in MR deregistration The issue arises when kzalloc() is invoked while holding umem_mutex or any other lock acquired under umem_mutex. This is problematic because kzalloc() can trigger fs_reclaim_aqcuire(), which may, in turn, invoke mmu_notifier_invalidate_range_start(). This function can lead to mlx5_ib_invalidate_range(), which attempts to acquire umem_mutex again, resulting in a deadlock. The problematic flow: CPU0 | CPU1 ---------------------------------------|------------------------------------------------ mlx5_ib_dereg_mr() | → revoke_mr() | → mutex_lock(&umem_odp->umem_mutex) | | mlx5_mkey_cache_init() | → mutex_lock(&dev->cache.rb_lock) | → mlx5r_cache_create_ent_locked() | → kzalloc(GFP_KERNEL) | → fs_reclaim() | → mmu_notifier_invalidate_range_start() | → mlx5_ib_invalidate_range() | → mutex_lock(&umem_odp->umem_mutex) → cache_ent_find_and_store() | → mutex_lock(&dev->cache.rb_lock) | Additionally, when kzalloc() is called from within cache_ent_find_and_store(), we encounter the same deadlock due to re-acquisition of umem_mutex. Solve by releasing umem_mutex in dereg_mr() after umr_revoke_mr() and before acquiring rb_lock. This ensures that we don't hold umem_mutex while performing memory allocations that could trigger the reclaim path. This change prevents the deadlock by ensuring proper lock ordering and avoiding holding locks during memory allocation operations that could trigger the reclaim path. The following lockdep warning demonstrates the deadlock: python3/20557 is trying to acquire lock: ffff888387542128 (&umem_odp->umem_mutex){+.+.}-{4:4}, at: mlx5_ib_invalidate_range+0x5b/0x550 [mlx5_ib] but task is already holding lock: ffffffff82f6b840 (mmu_notifier_invalidate_range_start){+.+.}-{0:0}, at: unmap_vmas+0x7b/0x1a0 which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #3 (mmu_notifier_invalidate_range_start){+.+.}-{0:0}: fs_reclaim_acquire+0x60/0xd0 mem_cgroup_css_alloc+0x6f/0x9b0 cgroup_init_subsys+0xa4/0x240 cgroup_init+0x1c8/0x510 start_kernel+0x747/0x760 x86_64_start_reservations+0x25/0x30 x86_64_start_kernel+0x73/0x80 common_startup_64+0x129/0x138 -> #2 (fs_reclaim){+.+.}-{0:0}: fs_reclaim_acquire+0x91/0xd0 __kmalloc_cache_noprof+0x4d/0x4c0 mlx5r_cache_create_ent_locked+0x75/0x620 [mlx5_ib] mlx5_mkey_cache_init+0x186/0x360 [mlx5_ib] mlx5_ib_stage_post_ib_reg_umr_init+0x3c/0x60 [mlx5_ib] __mlx5_ib_add+0x4b/0x190 [mlx5_ib] mlx5r_probe+0xd9/0x320 [mlx5_ib] auxiliary_bus_probe+0x42/0x70 really_probe+0xdb/0x360 __driver_probe_device+0x8f/0x130 driver_probe_device+0x1f/0xb0 __driver_attach+0xd4/0x1f0 bus_for_each_dev+0x79/0xd0 bus_add_driver+0xf0/0x200 driver_register+0x6e/0xc0 __auxiliary_driver_register+0x6a/0xc0 do_one_initcall+0x5e/0x390 do_init_module+0x88/0x240 init_module_from_file+0x85/0xc0 idempotent_init_module+0x104/0x300 __x64_sys_finit_module+0x68/0xc0 do_syscall_64+0x6d/0x140 entry_SYSCALL_64_after_hwframe+0x4b/0x53 -> #1 (&dev->cache.rb_lock){+.+.}-{4:4}: __mutex_lock+0x98/0xf10 __mlx5_ib_dereg_mr+0x6f2/0x890 [mlx5_ib] mlx5_ib_dereg_mr+0x21/0x110 [mlx5_ib] ib_dereg_mr_user+0x85/0x1f0 [ib_core] ---truncated---
CVE-2025-2775 1 Sysaid 2 Sysaid, Sysaid On-premises 2025-11-19 9.3 Critical
SysAid On-Prem versions <= 23.3.40 are vulnerable to an unauthenticated XML External Entity (XXE) vulnerability in the Checkin processing functionality, allowing for administrator account takeover and file read primitives.
CVE-2025-2776 1 Sysaid 2 Sysaid, Sysaid On-premises 2025-11-19 9.3 Critical
SysAid On-Prem versions <= 23.3.40 are vulnerable to an unauthenticated XML External Entity (XXE) vulnerability in the Server URL processing functionality, allowing for administrator account takeover and file read primitives.
CVE-2025-2777 1 Sysaid 2 Sysaid, Sysaid On-premises 2025-11-19 9.3 Critical
SysAid On-Prem versions <= 23.3.40 are vulnerable to an unauthenticated XML External Entity (XXE) vulnerability in the lshw processing functionality, allowing for administrator account takeover and file read primitives.
CVE-2025-41116 1 Grafana 1 Grafana 2025-11-19 N/A
When using the Grafana Databricks Datasource Plugin, if Oauth passthrough is enabled on the datasource, and multiple users are using the same datasource at the same time on a single Grafana instance, it  could result in  the wrong user identifier being used, and information for which the viewer is not authorized being returned.  This issue affects Grafana Databricks Datasource Plugin: from 1.6.0 before 1.12.0
CVE-2025-38436 1 Linux 1 Linux Kernel 2025-11-19 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drm/scheduler: signal scheduled fence when kill job When an entity from application B is killed, drm_sched_entity_kill() removes all jobs belonging to that entity through drm_sched_entity_kill_jobs_work(). If application A's job depends on a scheduled fence from application B's job, and that fence is not properly signaled during the killing process, application A's dependency cannot be cleared. This leads to application A hanging indefinitely while waiting for a dependency that will never be resolved. Fix this issue by ensuring that scheduled fences are properly signaled when an entity is killed, allowing dependent applications to continue execution.
CVE-2025-38493 1 Linux 1 Linux Kernel 2025-11-19 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: tracing/osnoise: Fix crash in timerlat_dump_stack() We have observed kernel panics when using timerlat with stack saving, with the following dmesg output: memcpy: detected buffer overflow: 88 byte write of buffer size 0 WARNING: CPU: 2 PID: 8153 at lib/string_helpers.c:1032 __fortify_report+0x55/0xa0 CPU: 2 UID: 0 PID: 8153 Comm: timerlatu/2 Kdump: loaded Not tainted 6.15.3-200.fc42.x86_64 #1 PREEMPT(lazy) Call Trace: <TASK> ? trace_buffer_lock_reserve+0x2a/0x60 __fortify_panic+0xd/0xf __timerlat_dump_stack.cold+0xd/0xd timerlat_dump_stack.part.0+0x47/0x80 timerlat_fd_read+0x36d/0x390 vfs_read+0xe2/0x390 ? syscall_exit_to_user_mode+0x1d5/0x210 ksys_read+0x73/0xe0 do_syscall_64+0x7b/0x160 ? exc_page_fault+0x7e/0x1a0 entry_SYSCALL_64_after_hwframe+0x76/0x7e __timerlat_dump_stack() constructs the ftrace stack entry like this: struct stack_entry *entry; ... memcpy(&entry->caller, fstack->calls, size); entry->size = fstack->nr_entries; Since commit e7186af7fb26 ("tracing: Add back FORTIFY_SOURCE logic to kernel_stack event structure"), struct stack_entry marks its caller field with __counted_by(size). At the time of the memcpy, entry->size contains garbage from the ringbuffer, which under some circumstances is zero, triggering a kernel panic by buffer overflow. Populate the size field before the memcpy so that the out-of-bounds check knows the correct size. This is analogous to __ftrace_trace_stack().
CVE-2025-38506 1 Linux 1 Linux Kernel 2025-11-19 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: KVM: Allow CPU to reschedule while setting per-page memory attributes When running an SEV-SNP guest with a sufficiently large amount of memory (1TB+), the host can experience CPU soft lockups when running an operation in kvm_vm_set_mem_attributes() to set memory attributes on the whole range of guest memory. watchdog: BUG: soft lockup - CPU#8 stuck for 26s! [qemu-kvm:6372] CPU: 8 UID: 0 PID: 6372 Comm: qemu-kvm Kdump: loaded Not tainted 6.15.0-rc7.20250520.el9uek.rc1.x86_64 #1 PREEMPT(voluntary) Hardware name: Oracle Corporation ORACLE SERVER E4-2c/Asm,MB Tray,2U,E4-2c, BIOS 78016600 11/13/2024 RIP: 0010:xas_create+0x78/0x1f0 Code: 00 00 00 41 80 fc 01 0f 84 82 00 00 00 ba 06 00 00 00 bd 06 00 00 00 49 8b 45 08 4d 8d 65 08 41 39 d6 73 20 83 ed 06 48 85 c0 <74> 67 48 89 c2 83 e2 03 48 83 fa 02 75 0c 48 3d 00 10 00 00 0f 87 RSP: 0018:ffffad890a34b940 EFLAGS: 00000286 RAX: ffff96f30b261daa RBX: ffffad890a34b9c8 RCX: 0000000000000000 RDX: 000000000000001e RSI: 0000000000000000 RDI: 0000000000000000 RBP: 0000000000000018 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000000 R12: ffffad890a356868 R13: ffffad890a356860 R14: 0000000000000000 R15: ffffad890a356868 FS: 00007f5578a2a400(0000) GS:ffff97ed317e1000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f015c70fb18 CR3: 00000001109fd006 CR4: 0000000000f70ef0 PKRU: 55555554 Call Trace: <TASK> xas_store+0x58/0x630 __xa_store+0xa5/0x130 xa_store+0x2c/0x50 kvm_vm_set_mem_attributes+0x343/0x710 [kvm] kvm_vm_ioctl+0x796/0xab0 [kvm] __x64_sys_ioctl+0xa3/0xd0 do_syscall_64+0x8c/0x7a0 entry_SYSCALL_64_after_hwframe+0x76/0x7e RIP: 0033:0x7f5578d031bb Code: ff ff ff 85 c0 79 9b 49 c7 c4 ff ff ff ff 5b 5d 4c 89 e0 41 5c c3 66 0f 1f 84 00 00 00 00 00 f3 0f 1e fa b8 10 00 00 00 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 8b 0d 2d 4c 0f 00 f7 d8 64 89 01 48 RSP: 002b:00007ffe0a742b88 EFLAGS: 00000246 ORIG_RAX: 0000000000000010 RAX: ffffffffffffffda RBX: 000000004020aed2 RCX: 00007f5578d031bb RDX: 00007ffe0a742c80 RSI: 000000004020aed2 RDI: 000000000000000b RBP: 0000010000000000 R08: 0000010000000000 R09: 0000017680000000 R10: 0000000000000080 R11: 0000000000000246 R12: 00005575e5f95120 R13: 00007ffe0a742c80 R14: 0000000000000008 R15: 00005575e5f961e0 While looping through the range of memory setting the attributes, call cond_resched() to give the scheduler a chance to run a higher priority task on the runqueue if necessary and avoid staying in kernel mode long enough to trigger the lockup.
CVE-2025-38241 1 Linux 1 Linux Kernel 2025-11-19 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: mm/shmem, swap: fix softlockup with mTHP swapin Following softlockup can be easily reproduced on my test machine with: echo always > /sys/kernel/mm/transparent_hugepage/hugepages-64kB/enabled swapon /dev/zram0 # zram0 is a 48G swap device mkdir -p /sys/fs/cgroup/memory/test echo 1G > /sys/fs/cgroup/test/memory.max echo $BASHPID > /sys/fs/cgroup/test/cgroup.procs while true; do dd if=/dev/zero of=/tmp/test.img bs=1M count=5120 cat /tmp/test.img > /dev/null rm /tmp/test.img done Then after a while: watchdog: BUG: soft lockup - CPU#0 stuck for 763s! [cat:5787] Modules linked in: zram virtiofs CPU: 0 UID: 0 PID: 5787 Comm: cat Kdump: loaded Tainted: G L 6.15.0.orig-gf3021d9246bc-dirty #118 PREEMPT(voluntary)· Tainted: [L]=SOFTLOCKUP Hardware name: Red Hat KVM/RHEL-AV, BIOS 0.0.0 02/06/2015 RIP: 0010:mpol_shared_policy_lookup+0xd/0x70 Code: e9 b8 b4 ff ff 31 c0 c3 cc cc cc cc 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 66 0f 1f 00 0f 1f 44 00 00 41 54 55 53 <48> 8b 1f 48 85 db 74 41 4c 8d 67 08 48 89 fb 48 89 f5 4c 89 e7 e8 RSP: 0018:ffffc90002b1fc28 EFLAGS: 00000202 RAX: 00000000001c20ca RBX: 0000000000724e1e RCX: 0000000000000001 RDX: ffff888118e214c8 RSI: 0000000000057d42 RDI: ffff888118e21518 RBP: 000000000002bec8 R08: 0000000000000001 R09: 0000000000000000 R10: 0000000000000bf4 R11: 0000000000000000 R12: 0000000000000001 R13: 00000000001c20ca R14: 00000000001c20ca R15: 0000000000000000 FS: 00007f03f995c740(0000) GS:ffff88a07ad9a000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f03f98f1000 CR3: 0000000144626004 CR4: 0000000000770eb0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 PKRU: 55555554 Call Trace: <TASK> shmem_alloc_folio+0x31/0xc0 shmem_swapin_folio+0x309/0xcf0 ? filemap_get_entry+0x117/0x1e0 ? xas_load+0xd/0xb0 ? filemap_get_entry+0x101/0x1e0 shmem_get_folio_gfp+0x2ed/0x5b0 shmem_file_read_iter+0x7f/0x2e0 vfs_read+0x252/0x330 ksys_read+0x68/0xf0 do_syscall_64+0x4c/0x1c0 entry_SYSCALL_64_after_hwframe+0x76/0x7e RIP: 0033:0x7f03f9a46991 Code: 00 48 8b 15 81 14 10 00 f7 d8 64 89 02 b8 ff ff ff ff eb bd e8 20 ad 01 00 f3 0f 1e fa 80 3d 35 97 10 00 00 74 13 31 c0 0f 05 <48> 3d 00 f0 ff ff 77 4f c3 66 0f 1f 44 00 00 55 48 89 e5 48 83 ec RSP: 002b:00007fff3c52bd28 EFLAGS: 00000246 ORIG_RAX: 0000000000000000 RAX: ffffffffffffffda RBX: 0000000000040000 RCX: 00007f03f9a46991 RDX: 0000000000040000 RSI: 00007f03f98ba000 RDI: 0000000000000003 RBP: 00007fff3c52bd50 R08: 0000000000000000 R09: 00007f03f9b9a380 R10: 0000000000000022 R11: 0000000000000246 R12: 0000000000040000 R13: 00007f03f98ba000 R14: 0000000000000003 R15: 0000000000000000 </TASK> The reason is simple, readahead brought some order 0 folio in swap cache, and the swapin mTHP folio being allocated is in conflict with it, so swapcache_prepare fails and causes shmem_swap_alloc_folio to return -EEXIST, and shmem simply retries again and again causing this loop. Fix it by applying a similar fix for anon mTHP swapin. The performance change is very slight, time of swapin 10g zero folios with shmem (test for 12 times): Before: 2.47s After: 2.48s [kasong@tencent.com: add comment]
CVE-2025-20343 1 Cisco 2 Identity Services Engine, Identity Services Engine Software 2025-11-19 8.6 High
A vulnerability in the RADIUS setting Reject RADIUS requests from clients with repeated failures on Cisco Identity Services Engine (ISE) could allow an unauthenticated, remote attacker to cause Cisco ISE to restart unexpectedly. This vulnerability is due to a logic error when processing a RADIUS access request for a MAC address that is already a rejected endpoint. An attacker could exploit this vulnerability by sending a specific sequence of multiple crafted RADIUS access request messages to Cisco ISE. A successful exploit could allow the attacker to cause a denial of service (DoS) condition when Cisco ISE restarts.
CVE-2025-37897 2 Debian, Linux 2 Debian Linux, Linux Kernel 2025-11-19 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: wifi: plfxlc: Remove erroneous assert in plfxlc_mac_release plfxlc_mac_release() asserts that mac->lock is held. This assertion is incorrect, because even if it was possible, it would not be the valid behaviour. The function is used when probe fails or after the device is disconnected. In both cases mac->lock can not be held as the driver is not working with the device at the moment. All functions that use mac->lock unlock it just after it was held. There is also no need to hold mac->lock for plfxlc_mac_release() itself, as mac data is not affected, except for mac->flags, which is modified atomically. This bug leads to the following warning: ================================================================ WARNING: CPU: 0 PID: 127 at drivers/net/wireless/purelifi/plfxlc/mac.c:106 plfxlc_mac_release+0x7d/0xa0 Modules linked in: CPU: 0 PID: 127 Comm: kworker/0:2 Not tainted 6.1.124-syzkaller #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 09/13/2024 Workqueue: usb_hub_wq hub_event RIP: 0010:plfxlc_mac_release+0x7d/0xa0 drivers/net/wireless/purelifi/plfxlc/mac.c:106 Call Trace: <TASK> probe+0x941/0xbd0 drivers/net/wireless/purelifi/plfxlc/usb.c:694 usb_probe_interface+0x5c0/0xaf0 drivers/usb/core/driver.c:396 really_probe+0x2ab/0xcb0 drivers/base/dd.c:639 __driver_probe_device+0x1a2/0x3d0 drivers/base/dd.c:785 driver_probe_device+0x50/0x420 drivers/base/dd.c:815 __device_attach_driver+0x2cf/0x510 drivers/base/dd.c:943 bus_for_each_drv+0x183/0x200 drivers/base/bus.c:429 __device_attach+0x359/0x570 drivers/base/dd.c:1015 bus_probe_device+0xba/0x1e0 drivers/base/bus.c:489 device_add+0xb48/0xfd0 drivers/base/core.c:3696 usb_set_configuration+0x19dd/0x2020 drivers/usb/core/message.c:2165 usb_generic_driver_probe+0x84/0x140 drivers/usb/core/generic.c:238 usb_probe_device+0x130/0x260 drivers/usb/core/driver.c:293 really_probe+0x2ab/0xcb0 drivers/base/dd.c:639 __driver_probe_device+0x1a2/0x3d0 drivers/base/dd.c:785 driver_probe_device+0x50/0x420 drivers/base/dd.c:815 __device_attach_driver+0x2cf/0x510 drivers/base/dd.c:943 bus_for_each_drv+0x183/0x200 drivers/base/bus.c:429 __device_attach+0x359/0x570 drivers/base/dd.c:1015 bus_probe_device+0xba/0x1e0 drivers/base/bus.c:489 device_add+0xb48/0xfd0 drivers/base/core.c:3696 usb_new_device+0xbdd/0x18f0 drivers/usb/core/hub.c:2620 hub_port_connect drivers/usb/core/hub.c:5477 [inline] hub_port_connect_change drivers/usb/core/hub.c:5617 [inline] port_event drivers/usb/core/hub.c:5773 [inline] hub_event+0x2efe/0x5730 drivers/usb/core/hub.c:5855 process_one_work+0x8a9/0x11d0 kernel/workqueue.c:2292 worker_thread+0xa47/0x1200 kernel/workqueue.c:2439 kthread+0x28d/0x320 kernel/kthread.c:376 ret_from_fork+0x1f/0x30 arch/x86/entry/entry_64.S:295 </TASK> ================================================================ Found by Linux Verification Center (linuxtesting.org) with Syzkaller.
CVE-2024-35281 1 Fortinet 2 Forticlient, Fortifone Softclient 2025-11-19 2.3 Low
An improper isolation or compartmentalization vulnerability [CWE-653] in FortiClientMac version 7.4.2 and below, version 7.2.8 and below, 7.0 all versions and FortiVoiceUCDesktop 3.0 all versions desktop application may allow an authenticated attacker to inject code via Electron environment variables.
CVE-2022-50225 1 Linux 1 Linux Kernel 2025-11-19 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: riscv:uprobe fix SR_SPIE set/clear handling In riscv the process of uprobe going to clear spie before exec the origin insn,and set spie after that.But When access the page which origin insn has been placed a page fault may happen and irq was disabled in arch_uprobe_pre_xol function,It cause a WARN as follows. There is no need to clear/set spie in arch_uprobe_pre/post/abort_xol. We can just remove it. [ 31.684157] BUG: sleeping function called from invalid context at kernel/locking/rwsem.c:1488 [ 31.684677] in_atomic(): 0, irqs_disabled(): 1, non_block: 0, pid: 76, name: work [ 31.684929] preempt_count: 0, expected: 0 [ 31.685969] CPU: 2 PID: 76 Comm: work Tainted: G [ 31.686542] Hardware name: riscv-virtio,qemu (DT) [ 31.686797] Call Trace: [ 31.687053] [<ffffffff80006442>] dump_backtrace+0x30/0x38 [ 31.687699] [<ffffffff80812118>] show_stack+0x40/0x4c [ 31.688141] [<ffffffff8081817a>] dump_stack_lvl+0x44/0x5c [ 31.688396] [<ffffffff808181aa>] dump_stack+0x18/0x20 [ 31.688653] [<ffffffff8003e454>] __might_resched+0x114/0x122 [ 31.688948] [<ffffffff8003e4b2>] __might_sleep+0x50/0x7a [ 31.689435] [<ffffffff80822676>] down_read+0x30/0x130 [ 31.689728] [<ffffffff8000b650>] do_page_fault+0x166/x446 [ 31.689997] [<ffffffff80003c0c>] ret_from_exception+0x0/0xc
CVE-2025-34490 1 Gfi 1 Mailessentials 2025-11-19 6.5 Medium
GFI MailEssentials prior to version 21.8 is vulnerable to an XML External Entity (XXE) issue. An authenticated and remote attacker can send crafted HTTP requests to read arbitrary system files.
CVE-2025-36223 1 Ibm 1 Openpages 2025-11-18 5.4 Medium
IBM OpenPages 9.0 and 9.1 is vulnerable to HTTP header injection, caused by improper validation of input by the HOST headers. This could allow an attacker to conduct various attacks against the vulnerable system, including cross-site scripting, cache poisoning or session hijacking.
CVE-2022-50116 1 Linux 1 Linux Kernel 2025-11-18 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: tty: n_gsm: fix deadlock and link starvation in outgoing data path The current implementation queues up new control and user packets as needed and processes this queue down to the ldisc in the same code path. That means that the upper and the lower layer are hard coupled in the code. Due to this deadlocks can happen as seen below while transmitting data, especially during ldisc congestion. Furthermore, the data channels starve the control channel on high transmission load on the ldisc. Introduce an additional control channel data queue to prevent timeouts and link hangups during ldisc congestion. This is being processed before the user channel data queue in gsm_data_kick(), i.e. with the highest priority. Put the queue to ldisc data path into a workqueue and trigger it whenever new data has been put into the transmission queue. Change gsm_dlci_data_sweep() accordingly to fill up the transmission queue until TX_THRESH_HI. This solves the locking issue, keeps latency low and provides good performance on high data load. Note that now all packets from a DLCI are removed from the internal queue if the associated DLCI was closed. This ensures that no data is sent by the introduced write task to an already closed DLCI. BUG: spinlock recursion on CPU#0, test_v24_loop/124 lock: serial8250_ports+0x3a8/0x7500, .magic: dead4ead, .owner: test_v24_loop/124, .owner_cpu: 0 CPU: 0 PID: 124 Comm: test_v24_loop Tainted: G O 5.18.0-rc2 #3 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.15.0-1 04/01/2014 Call Trace: <IRQ> dump_stack_lvl+0x34/0x44 do_raw_spin_lock+0x76/0xa0 _raw_spin_lock_irqsave+0x72/0x80 uart_write_room+0x3b/0xc0 gsm_data_kick+0x14b/0x240 [n_gsm] gsmld_write_wakeup+0x35/0x70 [n_gsm] tty_wakeup+0x53/0x60 tty_port_default_wakeup+0x1b/0x30 serial8250_tx_chars+0x12f/0x220 serial8250_handle_irq.part.0+0xfe/0x150 serial8250_default_handle_irq+0x48/0x80 serial8250_interrupt+0x56/0xa0 __handle_irq_event_percpu+0x78/0x1f0 handle_irq_event+0x34/0x70 handle_fasteoi_irq+0x90/0x1e0 __common_interrupt+0x69/0x100 common_interrupt+0x48/0xc0 asm_common_interrupt+0x1e/0x40 RIP: 0010:__do_softirq+0x83/0x34e Code: 2a 0a ff 0f b7 ed c7 44 24 10 0a 00 00 00 48 c7 c7 51 2a 64 82 e8 2d e2 d5 ff 65 66 c7 05 83 af 1e 7e 00 00 fb b8 ff ff ff ff <49> c7 c2 40 61 80 82 0f bc c5 41 89 c4 41 83 c4 01 0f 84 e6 00 00 RSP: 0018:ffffc90000003f98 EFLAGS: 00000286 RAX: 00000000ffffffff RBX: 0000000000000000 RCX: 0000000000000000 RDX: 0000000000000000 RSI: ffffffff82642a51 RDI: ffffffff825bb5e7 RBP: 0000000000000200 R08: 00000008de3271a8 R09: 0000000000000000 R10: 0000000000000001 R11: 0000000000000000 R12: 0000000000000000 R13: 0000000000000030 R14: 0000000000000000 R15: 0000000000000000 ? __do_softirq+0x73/0x34e irq_exit_rcu+0xb5/0x100 common_interrupt+0xa4/0xc0 </IRQ> <TASK> asm_common_interrupt+0x1e/0x40 RIP: 0010:_raw_spin_unlock_irqrestore+0x2e/0x50 Code: 00 55 48 89 fd 48 83 c7 18 53 48 89 f3 48 8b 74 24 10 e8 85 28 36 ff 48 89 ef e8 cd 58 36 ff 80 e7 02 74 01 fb bf 01 00 00 00 <e8> 3d 97 33 ff 65 8b 05 96 23 2b 7e 85 c0 74 03 5b 5d c3 0f 1f 44 RSP: 0018:ffffc9000020fd08 EFLAGS: 00000202 RAX: 0000000000000000 RBX: 0000000000000246 RCX: 0000000000000000 RDX: 0000000000000004 RSI: ffffffff8257fd74 RDI: 0000000000000001 RBP: ffff8880057de3a0 R08: 00000008de233000 R09: 0000000000000000 R10: 0000000000000001 R11: 0000000000000000 R12: 0000000000000000 R13: 0000000000000100 R14: 0000000000000202 R15: ffff8880057df0b8 ? _raw_spin_unlock_irqrestore+0x23/0x50 gsmtty_write+0x65/0x80 [n_gsm] n_tty_write+0x33f/0x530 ? swake_up_all+0xe0/0xe0 file_tty_write.constprop.0+0x1b1/0x320 ? n_tty_flush_buffer+0xb0/0xb0 new_sync_write+0x10c/0x190 vfs_write+0x282/0x310 ksys_write+0x68/0xe0 do_syscall_64+0x3b/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xae RIP: 0033:0x7f3e5e35c15c Code: 8b 7c 24 08 89 c5 e8 c5 ff ff ff 89 ef 89 44 24 ---truncated---
CVE-2022-50118 1 Linux 1 Linux Kernel 2025-11-18 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: powerpc/perf: Optimize clearing the pending PMI and remove WARN_ON for PMI check in power_pmu_disable commit 2c9ac51b850d ("powerpc/perf: Fix PMU callbacks to clear pending PMI before resetting an overflown PMC") added a new function "pmi_irq_pending" in hw_irq.h. This function is to check if there is a PMI marked as pending in Paca (PACA_IRQ_PMI).This is used in power_pmu_disable in a WARN_ON. The intention here is to provide a warning if there is PMI pending, but no counter is found overflown. During some of the perf runs, below warning is hit: WARNING: CPU: 36 PID: 0 at arch/powerpc/perf/core-book3s.c:1332 power_pmu_disable+0x25c/0x2c0 Modules linked in: ----- NIP [c000000000141c3c] power_pmu_disable+0x25c/0x2c0 LR [c000000000141c8c] power_pmu_disable+0x2ac/0x2c0 Call Trace: [c000000baffcfb90] [c000000000141c8c] power_pmu_disable+0x2ac/0x2c0 (unreliable) [c000000baffcfc10] [c0000000003e2f8c] perf_pmu_disable+0x4c/0x60 [c000000baffcfc30] [c0000000003e3344] group_sched_out.part.124+0x44/0x100 [c000000baffcfc80] [c0000000003e353c] __perf_event_disable+0x13c/0x240 [c000000baffcfcd0] [c0000000003dd334] event_function+0xc4/0x140 [c000000baffcfd20] [c0000000003d855c] remote_function+0x7c/0xa0 [c000000baffcfd50] [c00000000026c394] flush_smp_call_function_queue+0xd4/0x300 [c000000baffcfde0] [c000000000065b24] smp_ipi_demux_relaxed+0xa4/0x100 [c000000baffcfe20] [c0000000000cb2b0] xive_muxed_ipi_action+0x20/0x40 [c000000baffcfe40] [c000000000207c3c] __handle_irq_event_percpu+0x8c/0x250 [c000000baffcfee0] [c000000000207e2c] handle_irq_event_percpu+0x2c/0xa0 [c000000baffcff10] [c000000000210a04] handle_percpu_irq+0x84/0xc0 [c000000baffcff40] [c000000000205f14] generic_handle_irq+0x54/0x80 [c000000baffcff60] [c000000000015740] __do_irq+0x90/0x1d0 [c000000baffcff90] [c000000000016990] __do_IRQ+0xc0/0x140 [c0000009732f3940] [c000000bafceaca8] 0xc000000bafceaca8 [c0000009732f39d0] [c000000000016b78] do_IRQ+0x168/0x1c0 [c0000009732f3a00] [c0000000000090c8] hardware_interrupt_common_virt+0x218/0x220 This means that there is no PMC overflown among the active events in the PMU, but there is a PMU pending in Paca. The function "any_pmc_overflown" checks the PMCs on active events in cpuhw->n_events. Code snippet: <<>> if (any_pmc_overflown(cpuhw)) clear_pmi_irq_pending(); else WARN_ON(pmi_irq_pending()); <<>> Here the PMC overflown is not from active event. Example: When we do perf record, default cycles and instructions will be running on PMC6 and PMC5 respectively. It could happen that overflowed event is currently not active and pending PMI is for the inactive event. Debug logs from trace_printk: <<>> any_pmc_overflown: idx is 5: pmc value is 0xd9a power_pmu_disable: PMC1: 0x0, PMC2: 0x0, PMC3: 0x0, PMC4: 0x0, PMC5: 0xd9a, PMC6: 0x80002011 <<>> Here active PMC (from idx) is PMC5 , but overflown PMC is PMC6(0x80002011). When we handle PMI interrupt for such cases, if the PMC overflown is from inactive event, it will be ignored. Reference commit: commit bc09c219b2e6 ("powerpc/perf: Fix finding overflowed PMC in interrupt") Patch addresses two changes: 1) Fix 1 : Removal of warning ( WARN_ON(pmi_irq_pending()); ) We were printing warning if no PMC is found overflown among active PMU events, but PMI pending in PACA. But this could happen in cases where PMC overflown is not in active PMC. An inactive event could have caused the overflow. Hence the warning is not needed. To know pending PMI is from an inactive event, we need to loop through all PMC's which will cause more SPR reads via mfspr and increase in context switch. Also in existing function: perf_event_interrupt, already we ignore PMI's overflown when it is from an inactive PMC. 2) Fix 2: optimization in clearing pending PMI. Currently we check for any active PMC overflown before clearing PMI pending in Paca. This is causing additional SP ---truncated---