| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
bcache: fix variable length array abuse in btree_iter
btree_iter is used in two ways: either allocated on the stack with a
fixed size MAX_BSETS, or from a mempool with a dynamic size based on the
specific cache set. Previously, the struct had a fixed-length array of
size MAX_BSETS which was indexed out-of-bounds for the dynamically-sized
iterators, which causes UBSAN to complain.
This patch uses the same approach as in bcachefs's sort_iter and splits
the iterator into a btree_iter with a flexible array member and a
btree_iter_stack which embeds a btree_iter as well as a fixed-length
data array. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: Fix division by zero in setup_dsc_config
When slice_height is 0, the division by slice_height in the calculation
of the number of slices will cause a division by zero driver crash. This
leaves the kernel in a state that requires a reboot. This patch adds a
check to avoid the division by zero.
The stack trace below is for the 6.8.4 Kernel. I reproduced the issue on
a Z16 Gen 2 Lenovo Thinkpad with a Apple Studio Display monitor
connected via Thunderbolt. The amdgpu driver crashed with this exception
when I rebooted the system with the monitor connected.
kernel: ? die (arch/x86/kernel/dumpstack.c:421 arch/x86/kernel/dumpstack.c:434 arch/x86/kernel/dumpstack.c:447)
kernel: ? do_trap (arch/x86/kernel/traps.c:113 arch/x86/kernel/traps.c:154)
kernel: ? setup_dsc_config (drivers/gpu/drm/amd/amdgpu/../display/dc/dsc/dc_dsc.c:1053) amdgpu
kernel: ? do_error_trap (./arch/x86/include/asm/traps.h:58 arch/x86/kernel/traps.c:175)
kernel: ? setup_dsc_config (drivers/gpu/drm/amd/amdgpu/../display/dc/dsc/dc_dsc.c:1053) amdgpu
kernel: ? exc_divide_error (arch/x86/kernel/traps.c:194 (discriminator 2))
kernel: ? setup_dsc_config (drivers/gpu/drm/amd/amdgpu/../display/dc/dsc/dc_dsc.c:1053) amdgpu
kernel: ? asm_exc_divide_error (./arch/x86/include/asm/idtentry.h:548)
kernel: ? setup_dsc_config (drivers/gpu/drm/amd/amdgpu/../display/dc/dsc/dc_dsc.c:1053) amdgpu
kernel: dc_dsc_compute_config (drivers/gpu/drm/amd/amdgpu/../display/dc/dsc/dc_dsc.c:1109) amdgpu
After applying this patch, the driver no longer crashes when the monitor
is connected and the system is rebooted. I believe this is the same
issue reported for 3113. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: Fix dcn35 8k30 Underflow/Corruption Issue
[why]
odm calculation is missing for pipe split policy determination
and cause Underflow/Corruption issue.
[how]
Add the odm calculation. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: Fix MST Null Ptr for RV
The change try to fix below error specific to RV platform:
BUG: kernel NULL pointer dereference, address: 0000000000000008
PGD 0 P4D 0
Oops: 0000 [#1] PREEMPT SMP NOPTI
CPU: 4 PID: 917 Comm: sway Not tainted 6.3.9-arch1-1 #1 124dc55df4f5272ccb409f39ef4872fc2b3376a2
Hardware name: LENOVO 20NKS01Y00/20NKS01Y00, BIOS R12ET61W(1.31 ) 07/28/2022
RIP: 0010:drm_dp_atomic_find_time_slots+0x5e/0x260 [drm_display_helper]
Code: 01 00 00 48 8b 85 60 05 00 00 48 63 80 88 00 00 00 3b 43 28 0f 8d 2e 01 00 00 48 8b 53 30 48 8d 04 80 48 8d 04 c2 48 8b 40 18 <48> 8>
RSP: 0018:ffff960cc2df77d8 EFLAGS: 00010293
RAX: 0000000000000000 RBX: ffff8afb87e81280 RCX: 0000000000000224
RDX: ffff8afb9ee37c00 RSI: ffff8afb8da1a578 RDI: ffff8afb87e81280
RBP: ffff8afb83d67000 R08: 0000000000000001 R09: ffff8afb9652f850
R10: ffff960cc2df7908 R11: 0000000000000002 R12: 0000000000000000
R13: ffff8afb8d7688a0 R14: ffff8afb8da1a578 R15: 0000000000000224
FS: 00007f4dac35ce00(0000) GS:ffff8afe30b00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000008 CR3: 000000010ddc6000 CR4: 00000000003506e0
Call Trace:
<TASK>
? __die+0x23/0x70
? page_fault_oops+0x171/0x4e0
? plist_add+0xbe/0x100
? exc_page_fault+0x7c/0x180
? asm_exc_page_fault+0x26/0x30
? drm_dp_atomic_find_time_slots+0x5e/0x260 [drm_display_helper 0e67723696438d8e02b741593dd50d80b44c2026]
? drm_dp_atomic_find_time_slots+0x28/0x260 [drm_display_helper 0e67723696438d8e02b741593dd50d80b44c2026]
compute_mst_dsc_configs_for_link+0x2ff/0xa40 [amdgpu 62e600d2a75e9158e1cd0a243bdc8e6da040c054]
? fill_plane_buffer_attributes+0x419/0x510 [amdgpu 62e600d2a75e9158e1cd0a243bdc8e6da040c054]
compute_mst_dsc_configs_for_state+0x1e1/0x250 [amdgpu 62e600d2a75e9158e1cd0a243bdc8e6da040c054]
amdgpu_dm_atomic_check+0xecd/0x1190 [amdgpu 62e600d2a75e9158e1cd0a243bdc8e6da040c054]
drm_atomic_check_only+0x5c5/0xa40
drm_mode_atomic_ioctl+0x76e/0xbc0
? _copy_to_user+0x25/0x30
? drm_ioctl+0x296/0x4b0
? __pfx_drm_mode_atomic_ioctl+0x10/0x10
drm_ioctl_kernel+0xcd/0x170
drm_ioctl+0x26d/0x4b0
? __pfx_drm_mode_atomic_ioctl+0x10/0x10
amdgpu_drm_ioctl+0x4e/0x90 [amdgpu 62e600d2a75e9158e1cd0a243bdc8e6da040c054]
__x64_sys_ioctl+0x94/0xd0
do_syscall_64+0x60/0x90
? do_syscall_64+0x6c/0x90
entry_SYSCALL_64_after_hwframe+0x72/0xdc
RIP: 0033:0x7f4dad17f76f
Code: 00 48 89 44 24 18 31 c0 48 8d 44 24 60 c7 04 24 10 00 00 00 48 89 44 24 08 48 8d 44 24 20 48 89 44 24 10 b8 10 00 00 00 0f 05 <89> c>
RSP: 002b:00007ffd9ae859f0 EFLAGS: 00000246 ORIG_RAX: 0000000000000010
RAX: ffffffffffffffda RBX: 000055e255a55900 RCX: 00007f4dad17f76f
RDX: 00007ffd9ae85a90 RSI: 00000000c03864bc RDI: 000000000000000b
RBP: 00007ffd9ae85a90 R08: 0000000000000003 R09: 0000000000000003
R10: 0000000000000000 R11: 0000000000000246 R12: 00000000c03864bc
R13: 000000000000000b R14: 000055e255a7fc60 R15: 000055e255a01eb0
</TASK>
Modules linked in: rfcomm snd_seq_dummy snd_hrtimer snd_seq snd_seq_device ccm cmac algif_hash algif_skcipher af_alg joydev mousedev bnep >
typec libphy k10temp ipmi_msghandler roles i2c_scmi acpi_cpufreq mac_hid nft_reject_inet nf_reject_ipv4 nf_reject_ipv6 nft_reject nft_mas>
CR2: 0000000000000008
---[ end trace 0000000000000000 ]---
RIP: 0010:drm_dp_atomic_find_time_slots+0x5e/0x260 [drm_display_helper]
Code: 01 00 00 48 8b 85 60 05 00 00 48 63 80 88 00 00 00 3b 43 28 0f 8d 2e 01 00 00 48 8b 53 30 48 8d 04 80 48 8d 04 c2 48 8b 40 18 <48> 8>
RSP: 0018:ffff960cc2df77d8 EFLAGS: 00010293
RAX: 0000000000000000 RBX: ffff8afb87e81280 RCX: 0000000000000224
RDX: ffff8afb9ee37c00 RSI: ffff8afb8da1a578 RDI: ffff8afb87e81280
RBP: ffff8afb83d67000 R08: 0000000000000001 R09: ffff8afb9652f850
R10: ffff960cc2df7908 R11: 0000000000000002 R12: 0000000000000000
R13: ffff8afb8d7688a0 R14: ffff8afb8da1a578 R15: 0000000000000224
FS: 00007f4dac35ce00(0000) GS:ffff8afe30b00000(0000
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: Avoid NULL dereference of timing generator
[Why & How]
Check whether assigned timing generator is NULL or not before
accessing its funcs to prevent NULL dereference. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: Refactor DMCUB enter/exit idle interface
[Why]
We can hang in place trying to send commands when the DMCUB isn't
powered on.
[How]
We need to exit out of the idle state prior to sending a command,
but the process that performs the exit also invokes a command itself.
Fixing this issue involves the following:
1. Using a software state to track whether or not we need to start
the process to exit idle or notify idle.
It's possible for the hardware to have exited an idle state without
driver knowledge, but entering one is always restricted to a driver
allow - which makes the SW state vs HW state mismatch issue purely one
of optimization, which should seldomly be hit, if at all.
2. Refactor any instances of exit/notify idle to use a single wrapper
that maintains this SW state.
This works simialr to dc_allow_idle_optimizations, but works at the
DMCUB level and makes sure the state is marked prior to any notify/exit
idle so we don't enter an infinite loop.
3. Make sure we exit out of idle prior to sending any commands or
waiting for DMCUB idle.
This patch takes care of 1/2. A future patch will take care of wrapping
DMCUB command submission with calls to this new interface. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: Wake DMCUB before executing GPINT commands
[Why]
DMCUB can be in idle when we attempt to interface with the HW through
the GPINT mailbox resulting in a system hang.
[How]
Add dc_wake_and_execute_gpint() to wrap the wake, execute, sleep
sequence.
If the GPINT executes successfully then DMCUB will be put back into
sleep after the optional response is returned.
It functions similar to the inbox command interface. |
| In the Linux kernel, the following vulnerability has been resolved:
f2fs: fix to tag gcing flag on page during block migration
It needs to add missing gcing flag on page during block migration,
in order to garantee migrated data be persisted during checkpoint,
otherwise out-of-order persistency between data and node may cause
data corruption after SPOR.
Similar issue was fixed by commit 2d1fe8a86bf5 ("f2fs: fix to tag
gcing flag on page during file defragment"). |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: Wake DMCUB before sending a command
[Why]
We can hang in place trying to send commands when the DMCUB isn't
powered on.
[How]
For functions that execute within a DC context or DC lock we can
wrap the direct calls to dm_execute_dmub_cmd/list with code that
exits idle power optimizations and reallows once we're done with
the command submission on success.
For DM direct submissions the DM will need to manage the enter/exit
sequencing manually.
We cannot invoke a DMCUB command directly within the DM execution
helper or we can deadlock. |
| In the Linux kernel, the following vulnerability has been resolved:
f2fs: explicitly null-terminate the xattr list
When setting an xattr, explicitly null-terminate the xattr list. This
eliminates the fragile assumption that the unused xattr space is always
zeroed. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: fix array index out of bound error in DCN32 DML
[Why&How]
LinkCapacitySupport array is indexed with the number of voltage states and
not the number of max DPPs. Fix the error by changing the array
declaration to use the correct (larger) array size of total number of
voltage states. |
| In the Linux kernel, the following vulnerability has been resolved:
f2fs: let's avoid panic if extent_tree is not created
This patch avoids the below panic.
pc : __lookup_extent_tree+0xd8/0x760
lr : f2fs_do_write_data_page+0x104/0x87c
sp : ffffffc010cbb3c0
x29: ffffffc010cbb3e0 x28: 0000000000000000
x27: ffffff8803e7f020 x26: ffffff8803e7ed40
x25: ffffff8803e7f020 x24: ffffffc010cbb460
x23: ffffffc010cbb480 x22: 0000000000000000
x21: 0000000000000000 x20: ffffffff22e90900
x19: 0000000000000000 x18: ffffffc010c5d080
x17: 0000000000000000 x16: 0000000000000020
x15: ffffffdb1acdbb88 x14: ffffff888759e2b0
x13: 0000000000000000 x12: ffffff802da49000
x11: 000000000a001200 x10: ffffff8803e7ed40
x9 : ffffff8023195800 x8 : ffffff802da49078
x7 : 0000000000000001 x6 : 0000000000000000
x5 : 0000000000000006 x4 : ffffffc010cbba28
x3 : 0000000000000000 x2 : ffffffc010cbb480
x1 : 0000000000000000 x0 : ffffff8803e7ed40
Call trace:
__lookup_extent_tree+0xd8/0x760
f2fs_do_write_data_page+0x104/0x87c
f2fs_write_single_data_page+0x420/0xb60
f2fs_write_cache_pages+0x418/0xb1c
__f2fs_write_data_pages+0x428/0x58c
f2fs_write_data_pages+0x30/0x40
do_writepages+0x88/0x190
__writeback_single_inode+0x48/0x448
writeback_sb_inodes+0x468/0x9e8
__writeback_inodes_wb+0xb8/0x2a4
wb_writeback+0x33c/0x740
wb_do_writeback+0x2b4/0x400
wb_workfn+0xe4/0x34c
process_one_work+0x24c/0x5bc
worker_thread+0x3e8/0xa50
kthread+0x150/0x1b4 |
| In the Linux kernel, the following vulnerability has been resolved:
nvme-tcp: fix possible use-after-free in transport error_recovery work
While nvme_tcp_submit_async_event_work is checking the ctrl and queue
state before preparing the AER command and scheduling io_work, in order
to fully prevent a race where this check is not reliable the error
recovery work must flush async_event_work before continuing to destroy
the admin queue after setting the ctrl state to RESETTING such that
there is no race .submit_async_event and the error recovery handler
itself changing the ctrl state. |
| In the Linux kernel, the following vulnerability has been resolved:
f2fs: fix to avoid racing on fsync_entry_slab by multi filesystem instances
As syzbot reported, there is an use-after-free issue during f2fs recovery:
Use-after-free write at 0xffff88823bc16040 (in kfence-#10):
kmem_cache_destroy+0x1f/0x120 mm/slab_common.c:486
f2fs_recover_fsync_data+0x75b0/0x8380 fs/f2fs/recovery.c:869
f2fs_fill_super+0x9393/0xa420 fs/f2fs/super.c:3945
mount_bdev+0x26c/0x3a0 fs/super.c:1367
legacy_get_tree+0xea/0x180 fs/fs_context.c:592
vfs_get_tree+0x86/0x270 fs/super.c:1497
do_new_mount fs/namespace.c:2905 [inline]
path_mount+0x196f/0x2be0 fs/namespace.c:3235
do_mount fs/namespace.c:3248 [inline]
__do_sys_mount fs/namespace.c:3456 [inline]
__se_sys_mount+0x2f9/0x3b0 fs/namespace.c:3433
do_syscall_64+0x3f/0xb0 arch/x86/entry/common.c:47
entry_SYSCALL_64_after_hwframe+0x44/0xae
The root cause is multi f2fs filesystem instances can race on accessing
global fsync_entry_slab pointer, result in use-after-free issue of slab
cache, fixes to init/destroy this slab cache only once during module
init/destroy procedure to avoid this issue. |
| In the Linux kernel, the following vulnerability has been resolved:
bcache: avoid oversized read request in cache missing code path
In the cache missing code path of cached device, if a proper location
from the internal B+ tree is matched for a cache miss range, function
cached_dev_cache_miss() will be called in cache_lookup_fn() in the
following code block,
[code block 1]
526 unsigned int sectors = KEY_INODE(k) == s->iop.inode
527 ? min_t(uint64_t, INT_MAX,
528 KEY_START(k) - bio->bi_iter.bi_sector)
529 : INT_MAX;
530 int ret = s->d->cache_miss(b, s, bio, sectors);
Here s->d->cache_miss() is the call backfunction pointer initialized as
cached_dev_cache_miss(), the last parameter 'sectors' is an important
hint to calculate the size of read request to backing device of the
missing cache data.
Current calculation in above code block may generate oversized value of
'sectors', which consequently may trigger 2 different potential kernel
panics by BUG() or BUG_ON() as listed below,
1) BUG_ON() inside bch_btree_insert_key(),
[code block 2]
886 BUG_ON(b->ops->is_extents && !KEY_SIZE(k));
2) BUG() inside biovec_slab(),
[code block 3]
51 default:
52 BUG();
53 return NULL;
All the above panics are original from cached_dev_cache_miss() by the
oversized parameter 'sectors'.
Inside cached_dev_cache_miss(), parameter 'sectors' is used to calculate
the size of data read from backing device for the cache missing. This
size is stored in s->insert_bio_sectors by the following lines of code,
[code block 4]
909 s->insert_bio_sectors = min(sectors, bio_sectors(bio) + reada);
Then the actual key inserting to the internal B+ tree is generated and
stored in s->iop.replace_key by the following lines of code,
[code block 5]
911 s->iop.replace_key = KEY(s->iop.inode,
912 bio->bi_iter.bi_sector + s->insert_bio_sectors,
913 s->insert_bio_sectors);
The oversized parameter 'sectors' may trigger panic 1) by BUG_ON() from
the above code block.
And the bio sending to backing device for the missing data is allocated
with hint from s->insert_bio_sectors by the following lines of code,
[code block 6]
926 cache_bio = bio_alloc_bioset(GFP_NOWAIT,
927 DIV_ROUND_UP(s->insert_bio_sectors, PAGE_SECTORS),
928 &dc->disk.bio_split);
The oversized parameter 'sectors' may trigger panic 2) by BUG() from the
agove code block.
Now let me explain how the panics happen with the oversized 'sectors'.
In code block 5, replace_key is generated by macro KEY(). From the
definition of macro KEY(),
[code block 7]
71 #define KEY(inode, offset, size) \
72 ((struct bkey) { \
73 .high = (1ULL << 63) | ((__u64) (size) << 20) | (inode), \
74 .low = (offset) \
75 })
Here 'size' is 16bits width embedded in 64bits member 'high' of struct
bkey. But in code block 1, if "KEY_START(k) - bio->bi_iter.bi_sector" is
very probably to be larger than (1<<16) - 1, which makes the bkey size
calculation in code block 5 is overflowed. In one bug report the value
of parameter 'sectors' is 131072 (= 1 << 17), the overflowed 'sectors'
results the overflowed s->insert_bio_sectors in code block 4, then makes
size field of s->iop.replace_key to be 0 in code block 5. Then the 0-
sized s->iop.replace_key is inserted into the internal B+ tree as cache
missing check key (a special key to detect and avoid a racing between
normal write request and cache missing read request) as,
[code block 8]
915 ret = bch_btree_insert_check_key(b, &s->op, &s->iop.replace_key);
Then the 0-sized s->iop.replace_key as 3rd parameter triggers the bkey
size check BUG_ON() in code block 2, and causes the kernel panic 1).
Another ke
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: Fix potential memory leak in DMUB hw_init
[Why]
On resume we perform DMUB hw_init which allocates memory:
dm_resume->dm_dmub_hw_init->dc_dmub_srv_create->kzalloc
That results in memory leak in suspend/resume scenarios.
[How]
Allocate memory for the DC wrapper to DMUB only if it was not
allocated before.
No need to reallocate it on suspend/resume. |
| In the Linux kernel, the following vulnerability has been resolved:
f2fs: fix to avoid potential deadlock
Using f2fs_trylock_op() in f2fs_write_compressed_pages() to avoid potential
deadlock like we did in f2fs_write_single_data_page(). |
| Untrusted search path in .NET and Visual Studio allows an unauthorized attacker to execute code over a network. |
| Out-of-Bounds Read in netfilter/ipset in Linux Kernel ChromeOS [6.1, 5.15, 5.10, 5.4, 4.19] allows a local attacker with low privileges to trigger an out-of-bounds read, potentially leading to information disclosure |
| A race condition Use-After-Free vulnerability exists in the virtio_transport_space_update function within the Kernel 5.4 on ChromeOS. Concurrent allocation and freeing of the virtio_vsock_sock structure
during an AF_VSOCK connect syscall can occur before a worker thread accesses it resulting in a dangling pointer and potential kernel code execution. |