CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
A weakness has been identified in D-Link DIR-823X 240126/240802/250416. The impacted element is the function sub_412E7C of the file /usr/sbin/goahead of the component Environment Variable Handler. This manipulation of the argument terminal_addr/server_ip/server_port causes command injection. The attack can be initiated remotely. The exploit has been made available to the public and could be exploited. |
A security flaw has been discovered in itsourcecode Online Petshop Management System 1.0. The affected element is an unknown function of the file availableframe.php of the component Admin Dashboard. The manipulation of the argument name/address results in cross site scripting. It is possible to launch the attack remotely. The exploit has been released to the public and may be exploited. |
A vulnerability was identified in itsourcecode Online Petshop Management System 1.0. Impacted is an unknown function of the file addcnp.php of the component Available Products Page. The manipulation of the argument name/description leads to cross site scripting. It is possible to initiate the attack remotely. The exploit is publicly available and might be used. |
A vulnerability was determined in D-Link DIR-852 1.00CN B09. This issue affects the function ssdpcgi_main of the file htodcs/cgibin of the component Simple Service Discovery Protocol Service. Executing manipulation of the argument ST can lead to command injection. The attack may be performed from remote. The exploit has been publicly disclosed and may be utilized. This vulnerability only affects products that are no longer supported by the maintainer. |
A vulnerability was found in D-Link DIR-852 1.00CN B09. This vulnerability affects unknown code of the file /htdocs/cgibin/hedwig.cgi of the component Web Management Interface. Performing manipulation results in command injection. The attack is possible to be carried out remotely. The exploit has been made public and could be used. This vulnerability only affects products that are no longer supported by the maintainer. |
Liferay Portal 7.4.0 through 7.4.3.132, and Liferay DXP 2025.Q1.0 through 2025.Q1.1, 2024.Q4.0 through 2024.Q4.7, 2024.Q3.1 through 2024.Q3.13, 2024.Q2.0 through 2024.Q2.13, 2024.Q1.1 through 2024.Q1.14 and 7.4 GA through update 92 allows remote unauthenticated users (guests) to upload files via the form attachment field without proper validation, enabling extension obfuscation and bypassing MIME type checks. |
A vulnerability has been found in SourceCodester Online Exam Form Submission 1.0. This affects an unknown part of the file /admin/delete_user.php. Such manipulation of the argument ID leads to sql injection. The attack can be executed remotely. The exploit has been disclosed to the public and may be used. |
A flaw has been found in SourceCodester Online Exam Form Submission 1.0. Affected by this issue is some unknown functionality of the file /admin/update_s3.php. This manipulation of the argument credits causes sql injection. Remote exploitation of the attack is possible. The exploit has been published and may be used. |
NVIDIA HGX & DGX GB200, GB300, B300 contain a vulnerability in the HGX Management Controller (HMC) that may allow a malicious actor with administrative access on the BMC to access the HMC as an administrator. A successful exploit of this vulnerability may lead to code execution, denial of service, escalation of privileges, information disclosure, and data tampering. |
A vulnerability was detected in SourceCodester Online Exam Form Submission 1.0. Affected by this vulnerability is an unknown functionality of the file /user/dashboard.php?page=update_profile. The manipulation of the argument phone results in sql injection. The attack may be launched remotely. The exploit is now public and may be used. Other parameters might be affected as well. |
A security flaw has been discovered in PHPGurukul User Management System 1.0. This affects an unknown function of the file /login.php. Performing manipulation of the argument emailid results in sql injection. The attack can be initiated remotely. The exploit has been released to the public and may be exploited. |
A vulnerability was identified in SourceCodester Hotel Reservation System 1.0. The impacted element is an unknown function of the file deleteuser.php. Such manipulation of the argument ID leads to sql injection. It is possible to launch the attack remotely. The exploit is publicly available and might be used. |
In the Linux kernel, the following vulnerability has been resolved:
thermal/debugfs: Fix two locking issues with thermal zone debug
With the current thermal zone locking arrangement in the debugfs code,
user space can open the "mitigations" file for a thermal zone before
the zone's debugfs pointer is set which will result in a NULL pointer
dereference in tze_seq_start().
Moreover, thermal_debug_tz_remove() is not called under the thermal
zone lock, so it can run in parallel with the other functions accessing
the thermal zone's struct thermal_debugfs object. Then, it may clear
tz->debugfs after one of those functions has checked it and the
struct thermal_debugfs object may be freed prematurely.
To address the first problem, pass a pointer to the thermal zone's
struct thermal_debugfs object to debugfs_create_file() in
thermal_debug_tz_add() and make tze_seq_start(), tze_seq_next(),
tze_seq_stop(), and tze_seq_show() retrieve it from s->private
instead of a pointer to the thermal zone object. This will ensure
that tz_debugfs will be valid across the "mitigations" file accesses
until thermal_debugfs_remove_id() called by thermal_debug_tz_remove()
removes that file.
To address the second problem, use tz->lock in thermal_debug_tz_remove()
around the tz->debugfs value check (in case the same thermal zone is
removed at the same time in two different threads) and its reset to NULL.
Cc :6.8+ <stable@vger.kernel.org> # 6.8+ |
In the Linux kernel, the following vulnerability has been resolved:
qibfs: fix dentry leak
simple_recursive_removal() drops the pinning references to all positives
in subtree. For the cases when its argument has been kept alive by
the pinning alone that's exactly the right thing to do, but here
the argument comes from dcache lookup, that needs to be balanced by
explicit dput().
Fucked-up-by: Al Viro <viro@zeniv.linux.org.uk> |
In the Linux kernel, the following vulnerability has been resolved:
net/smc: fix neighbour and rtable leak in smc_ib_find_route()
In smc_ib_find_route(), the neighbour found by neigh_lookup() and rtable
resolved by ip_route_output_flow() are not released or put before return.
It may cause the refcount leak, so fix it. |
In the Linux kernel, the following vulnerability has been resolved:
xdp: use flags field to disambiguate broadcast redirect
When redirecting a packet using XDP, the bpf_redirect_map() helper will set
up the redirect destination information in struct bpf_redirect_info (using
the __bpf_xdp_redirect_map() helper function), and the xdp_do_redirect()
function will read this information after the XDP program returns and pass
the frame on to the right redirect destination.
When using the BPF_F_BROADCAST flag to do multicast redirect to a whole
map, __bpf_xdp_redirect_map() sets the 'map' pointer in struct
bpf_redirect_info to point to the destination map to be broadcast. And
xdp_do_redirect() reacts to the value of this map pointer to decide whether
it's dealing with a broadcast or a single-value redirect. However, if the
destination map is being destroyed before xdp_do_redirect() is called, the
map pointer will be cleared out (by bpf_clear_redirect_map()) without
waiting for any XDP programs to stop running. This causes xdp_do_redirect()
to think that the redirect was to a single target, but the target pointer
is also NULL (since broadcast redirects don't have a single target), so
this causes a crash when a NULL pointer is passed to dev_map_enqueue().
To fix this, change xdp_do_redirect() to react directly to the presence of
the BPF_F_BROADCAST flag in the 'flags' value in struct bpf_redirect_info
to disambiguate between a single-target and a broadcast redirect. And only
read the 'map' pointer if the broadcast flag is set, aborting if that has
been cleared out in the meantime. This prevents the crash, while keeping
the atomic (cmpxchg-based) clearing of the map pointer itself, and without
adding any more checks in the non-broadcast fast path. |
In the Linux kernel, the following vulnerability has been resolved:
efi/unaccepted: touch soft lockup during memory accept
Commit 50e782a86c98 ("efi/unaccepted: Fix soft lockups caused by
parallel memory acceptance") has released the spinlock so other CPUs can
do memory acceptance in parallel and not triggers softlockup on other
CPUs.
However the softlock up was intermittent shown up if the memory of the
TD guest is large, and the timeout of softlockup is set to 1 second:
RIP: 0010:_raw_spin_unlock_irqrestore
Call Trace:
? __hrtimer_run_queues
<IRQ>
? hrtimer_interrupt
? watchdog_timer_fn
? __sysvec_apic_timer_interrupt
? __pfx_watchdog_timer_fn
? sysvec_apic_timer_interrupt
</IRQ>
? __hrtimer_run_queues
<TASK>
? hrtimer_interrupt
? asm_sysvec_apic_timer_interrupt
? _raw_spin_unlock_irqrestore
? __sysvec_apic_timer_interrupt
? sysvec_apic_timer_interrupt
accept_memory
try_to_accept_memory
do_huge_pmd_anonymous_page
get_page_from_freelist
__handle_mm_fault
__alloc_pages
__folio_alloc
? __tdx_hypercall
handle_mm_fault
vma_alloc_folio
do_user_addr_fault
do_huge_pmd_anonymous_page
exc_page_fault
? __do_huge_pmd_anonymous_page
asm_exc_page_fault
__handle_mm_fault
When the local irq is enabled at the end of accept_memory(), the
softlockup detects that the watchdog on single CPU has not been fed for
a while. That is to say, even other CPUs will not be blocked by
spinlock, the current CPU might be stunk with local irq disabled for a
while, which hurts not only nmi watchdog but also softlockup.
Chao Gao pointed out that the memory accept could be time costly and
there was similar report before. Thus to avoid any softlocup detection
during this stage, give the softlockup a flag to skip the timeout check
at the end of accept_memory(), by invoking touch_softlockup_watchdog(). |
In the Linux kernel, the following vulnerability has been resolved:
bpf: Check bloom filter map value size
This patch adds a missing check to bloom filter creating, rejecting
values above KMALLOC_MAX_SIZE. This brings the bloom map in line with
many other map types.
The lack of this protection can cause kernel crashes for value sizes
that overflow int's. Such a crash was caught by syzkaller. The next
patch adds more guard-rails at a lower level. |
In the Linux kernel, the following vulnerability has been resolved:
block: fix overflow in blk_ioctl_discard()
There is no check for overflow of 'start + len' in blk_ioctl_discard().
Hung task occurs if submit an discard ioctl with the following param:
start = 0x80000000000ff000, len = 0x8000000000fff000;
Add the overflow validation now. |
In the Linux kernel, the following vulnerability has been resolved:
nfc: llcp: fix nfc_llcp_setsockopt() unsafe copies
syzbot reported unsafe calls to copy_from_sockptr() [1]
Use copy_safe_from_sockptr() instead.
[1]
BUG: KASAN: slab-out-of-bounds in copy_from_sockptr_offset include/linux/sockptr.h:49 [inline]
BUG: KASAN: slab-out-of-bounds in copy_from_sockptr include/linux/sockptr.h:55 [inline]
BUG: KASAN: slab-out-of-bounds in nfc_llcp_setsockopt+0x6c2/0x850 net/nfc/llcp_sock.c:255
Read of size 4 at addr ffff88801caa1ec3 by task syz-executor459/5078
CPU: 0 PID: 5078 Comm: syz-executor459 Not tainted 6.8.0-syzkaller-08951-gfe46a7dd189e #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 03/27/2024
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:88 [inline]
dump_stack_lvl+0x241/0x360 lib/dump_stack.c:114
print_address_description mm/kasan/report.c:377 [inline]
print_report+0x169/0x550 mm/kasan/report.c:488
kasan_report+0x143/0x180 mm/kasan/report.c:601
copy_from_sockptr_offset include/linux/sockptr.h:49 [inline]
copy_from_sockptr include/linux/sockptr.h:55 [inline]
nfc_llcp_setsockopt+0x6c2/0x850 net/nfc/llcp_sock.c:255
do_sock_setsockopt+0x3b1/0x720 net/socket.c:2311
__sys_setsockopt+0x1ae/0x250 net/socket.c:2334
__do_sys_setsockopt net/socket.c:2343 [inline]
__se_sys_setsockopt net/socket.c:2340 [inline]
__x64_sys_setsockopt+0xb5/0xd0 net/socket.c:2340
do_syscall_64+0xfd/0x240
entry_SYSCALL_64_after_hwframe+0x6d/0x75
RIP: 0033:0x7f7fac07fd89
Code: 28 00 00 00 75 05 48 83 c4 28 c3 e8 91 18 00 00 90 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 b8 ff ff ff f7 d8 64 89 01 48
RSP: 002b:00007fff660eb788 EFLAGS: 00000246 ORIG_RAX: 0000000000000036
RAX: ffffffffffffffda RBX: 0000000000000003 RCX: 00007f7fac07fd89
RDX: 0000000000000000 RSI: 0000000000000118 RDI: 0000000000000004
RBP: 0000000000000000 R08: 0000000000000002 R09: 0000000000000000
R10: 0000000020000a80 R11: 0000000000000246 R12: 0000000000000000
R13: 0000000000000000 R14: 0000000000000000 R15: 0000000000000000 |