| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In WS_FTP Server versions prior to 8.7.4 and 8.8.2, a pre-authenticated attacker could leverage a .NET deserialization vulnerability in the Ad Hoc Transfer module to execute remote commands on the underlying WS_FTP Server operating system. |
| A security vulnerability in MICS Admin Portal in Ivanti MobileIron Sentry versions 9.18.0 and below, which may allow an attacker to bypass authentication controls on the administrative interface due to an insufficiently restrictive Apache HTTPD configuration. |
| An authentication bypass vulnerability in Ivanti EPMM 11.10 and older, allows unauthorized users to access restricted functionality or resources of the application without proper authentication. This vulnerability is unique to CVE-2023-35078 announced earlier. |
| Commvault Web Server has an unspecified vulnerability that can be exploited by a remote, authenticated attacker. According to the Commvault advisory: "Webservers can be compromised through bad actors creating and executing webshells." Fixed in version 11.36.46, 11.32.89, 11.28.141, and 11.20.217 for Windows and Linux platforms. This vulnerability was added to the CISA Known Exploited Vulnerabilities (KEV) Catalog on 2025-04-28. |
| SAP NetWeaver Visual Composer Metadata Uploader is vulnerable when a privileged user can upload untrusted or malicious content which, when deserialized, could potentially lead to a compromise of confidentiality, integrity, and availability of the host system. |
| A path traversal vulnerability in Ivanti EPMM versions (11.10.x < 11.10.0.3, 11.9.x < 11.9.1.2 and 11.8.x < 11.8.1.2) allows an authenticated administrator to write arbitrary files onto the appliance. |
| An authentication bypass vulnerability in Ivanti EPMM allows unauthorized users to access restricted functionality or resources of the application without proper authentication. |
| In WhatsUp Gold versions released before 2023.1.3, an unauthenticated Remote Code Execution vulnerability in Progress WhatsUpGold. The
WhatsUp.ExportUtilities.Export.GetFileWithoutZip
allows execution of commands with iisapppool\nmconsole privileges. |
| In Progress Telerik Report Server, version 2024 Q1 (10.0.24.305) or earlier, on IIS, an unauthenticated attacker can gain access to Telerik Report Server restricted functionality via an authentication bypass vulnerability. |
| Rejetto HTTP File Server, up to and including version 2.3m, is vulnerable to a template injection vulnerability. This vulnerability allows a remote, unauthenticated attacker to execute arbitrary commands on the affected system by sending a specially crafted HTTP request. As of the CVE assignment date, Rejetto HFS 2.3m is no longer supported. |
| A command injection vulnerability in web components of Ivanti Connect Secure (9.x, 22.x) and Ivanti Policy Secure (9.x, 22.x) allows an authenticated administrator to send specially crafted requests and execute arbitrary commands on the appliance. |
| Unauthenticated remote attackers can access the system through the LoadMaster management interface, enabling arbitrary system command execution.
|
| ProjectSend versions prior to r1720 are affected by an improper authentication vulnerability. Remote, unauthenticated attackers can exploit this flaw by sending crafted HTTP requests to options.php, enabling unauthorized modification of the application's configuration. Successful exploitation allows attackers to create accounts, upload webshells, and embed malicious JavaScript. |
| SAP NetWeaver Visual Composer Metadata Uploader is not protected with a proper authorization, allowing unauthenticated agent to upload potentially malicious executable binaries that could severely harm the host system. This could significantly affect the confidentiality, integrity, and availability of the targeted system. |
| In WhatsUp Gold versions released before 2024.0.0, a SQL Injection vulnerability allows an unauthenticated attacker to retrieve the users encrypted password. |
| Summer Pearl Group Vacation Rental Management Platform prior to v1.0.2 does not properly invalidate active user sessions after a password change. This allows an attacker with a valid session token to maintain access to the account even after the legitimate user changes their password. |
| In the Linux kernel, the following vulnerability has been resolved:
RDMA/mlx5: Fix page_size variable overflow
Change all variables storing mlx5_umem_mkc_find_best_pgsz() result to
unsigned long to support values larger than 31 and avoid overflow.
For example: If we try to register 4GB of memory that is contiguous in
physical memory, the driver will optimize the page_size and try to use
an mkey with 4GB entity size. The 'unsigned int' page_size variable will
overflow to '0' and we'll hit the WARN_ON() in alloc_cacheable_mr().
WARNING: CPU: 2 PID: 1203 at drivers/infiniband/hw/mlx5/mr.c:1124 alloc_cacheable_mr+0x22/0x580 [mlx5_ib]
Modules linked in: mlx5_ib mlx5_core bonding ip6_gre ip6_tunnel tunnel6 ip_gre gre rdma_rxe rdma_ucm ib_uverbs ib_ipoib ib_umad rpcrdma ib_iser libiscsi scsi_transport_iscsi rdma_cm iw_cm ib_cm fuse ib_core [last unloaded: mlx5_core]
CPU: 2 UID: 70878 PID: 1203 Comm: rdma_resource_l Tainted: G W 6.14.0-rc4-dirty #43
Tainted: [W]=WARN
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014
RIP: 0010:alloc_cacheable_mr+0x22/0x580 [mlx5_ib]
Code: 90 90 90 90 90 90 90 90 0f 1f 44 00 00 55 48 89 e5 41 57 41 56 41 55 41 54 41 52 53 48 83 ec 30 f6 46 28 04 4c 8b 77 08 75 21 <0f> 0b 49 c7 c2 ea ff ff ff 48 8d 65 d0 4c 89 d0 5b 41 5a 41 5c 41
RSP: 0018:ffffc900006ffac8 EFLAGS: 00010246
RAX: 0000000004c0d0d0 RBX: ffff888217a22000 RCX: 0000000000100001
RDX: 00007fb7ac480000 RSI: ffff8882037b1240 RDI: ffff8882046f0600
RBP: ffffc900006ffb28 R08: 0000000000000001 R09: 0000000000000000
R10: 00000000000007e0 R11: ffffea0008011d40 R12: ffff8882037b1240
R13: ffff8882046f0600 R14: ffff888217a22000 R15: ffffc900006ffe00
FS: 00007fb7ed013340(0000) GS:ffff88885fd00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007fb7ed1d8000 CR3: 00000001fd8f6006 CR4: 0000000000772eb0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
PKRU: 55555554
Call Trace:
<TASK>
? __warn+0x81/0x130
? alloc_cacheable_mr+0x22/0x580 [mlx5_ib]
? report_bug+0xfc/0x1e0
? handle_bug+0x55/0x90
? exc_invalid_op+0x17/0x70
? asm_exc_invalid_op+0x1a/0x20
? alloc_cacheable_mr+0x22/0x580 [mlx5_ib]
create_real_mr+0x54/0x150 [mlx5_ib]
ib_uverbs_reg_mr+0x17f/0x2a0 [ib_uverbs]
ib_uverbs_handler_UVERBS_METHOD_INVOKE_WRITE+0xca/0x140 [ib_uverbs]
ib_uverbs_run_method+0x6d0/0x780 [ib_uverbs]
? __pfx_ib_uverbs_handler_UVERBS_METHOD_INVOKE_WRITE+0x10/0x10 [ib_uverbs]
ib_uverbs_cmd_verbs+0x19b/0x360 [ib_uverbs]
? walk_system_ram_range+0x79/0xd0
? ___pte_offset_map+0x1b/0x110
? __pte_offset_map_lock+0x80/0x100
ib_uverbs_ioctl+0xac/0x110 [ib_uverbs]
__x64_sys_ioctl+0x94/0xb0
do_syscall_64+0x50/0x110
entry_SYSCALL_64_after_hwframe+0x76/0x7e
RIP: 0033:0x7fb7ecf0737b
Code: ff ff ff 85 c0 79 9b 49 c7 c4 ff ff ff ff 5b 5d 4c 89 e0 41 5c c3 66 0f 1f 84 00 00 00 00 00 f3 0f 1e fa b8 10 00 00 00 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 8b 0d 7d 2a 0f 00 f7 d8 64 89 01 48
RSP: 002b:00007ffdbe03ecc8 EFLAGS: 00000246 ORIG_RAX: 0000000000000010
RAX: ffffffffffffffda RBX: 00007ffdbe03edb8 RCX: 00007fb7ecf0737b
RDX: 00007ffdbe03eda0 RSI: 00000000c0181b01 RDI: 0000000000000003
RBP: 00007ffdbe03ed80 R08: 00007fb7ecc84010 R09: 00007ffdbe03eed4
R10: 0000000000000009 R11: 0000000000000246 R12: 00007ffdbe03eed4
R13: 000000000000000c R14: 000000000000000c R15: 00007fb7ecc84150
</TASK> |
| In the Linux kernel, the following vulnerability has been resolved:
x86/mm/pat: Fix VM_PAT handling when fork() fails in copy_page_range()
If track_pfn_copy() fails, we already added the dst VMA to the maple
tree. As fork() fails, we'll cleanup the maple tree, and stumble over
the dst VMA for which we neither performed any reservation nor copied
any page tables.
Consequently untrack_pfn() will see VM_PAT and try obtaining the
PAT information from the page table -- which fails because the page
table was not copied.
The easiest fix would be to simply clear the VM_PAT flag of the dst VMA
if track_pfn_copy() fails. However, the whole thing is about "simply"
clearing the VM_PAT flag is shaky as well: if we passed track_pfn_copy()
and performed a reservation, but copying the page tables fails, we'll
simply clear the VM_PAT flag, not properly undoing the reservation ...
which is also wrong.
So let's fix it properly: set the VM_PAT flag only if the reservation
succeeded (leaving it clear initially), and undo the reservation if
anything goes wrong while copying the page tables: clearing the VM_PAT
flag after undoing the reservation.
Note that any copied page table entries will get zapped when the VMA will
get removed later, after copy_page_range() succeeded; as VM_PAT is not set
then, we won't try cleaning VM_PAT up once more and untrack_pfn() will be
happy. Note that leaving these page tables in place without a reservation
is not a problem, as we are aborting fork(); this process will never run.
A reproducer can trigger this usually at the first try:
https://gitlab.com/davidhildenbrand/scratchspace/-/raw/main/reproducers/pat_fork.c
WARNING: CPU: 26 PID: 11650 at arch/x86/mm/pat/memtype.c:983 get_pat_info+0xf6/0x110
Modules linked in: ...
CPU: 26 UID: 0 PID: 11650 Comm: repro3 Not tainted 6.12.0-rc5+ #92
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-2.fc40 04/01/2014
RIP: 0010:get_pat_info+0xf6/0x110
...
Call Trace:
<TASK>
...
untrack_pfn+0x52/0x110
unmap_single_vma+0xa6/0xe0
unmap_vmas+0x105/0x1f0
exit_mmap+0xf6/0x460
__mmput+0x4b/0x120
copy_process+0x1bf6/0x2aa0
kernel_clone+0xab/0x440
__do_sys_clone+0x66/0x90
do_syscall_64+0x95/0x180
Likely this case was missed in:
d155df53f310 ("x86/mm/pat: clear VM_PAT if copy_p4d_range failed")
... and instead of undoing the reservation we simply cleared the VM_PAT flag.
Keep the documentation of these functions in include/linux/pgtable.h,
one place is more than sufficient -- we should clean that up for the other
functions like track_pfn_remap/untrack_pfn separately. |
| In the Linux kernel, the following vulnerability has been resolved:
ocfs2: validate l_tree_depth to avoid out-of-bounds access
The l_tree_depth field is 16-bit (__le16), but the actual maximum depth is
limited to OCFS2_MAX_PATH_DEPTH.
Add a check to prevent out-of-bounds access if l_tree_depth has an invalid
value, which may occur when reading from a corrupted mounted disk [1]. |
| In the Linux kernel, the following vulnerability has been resolved:
iio: backend: make sure to NULL terminate stack buffer
Make sure to NULL terminate the buffer in
iio_backend_debugfs_write_reg() before passing it to sscanf(). It is a
stack variable so we should not assume it will 0 initialized. |