| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
gpio: davinci: Validate the obtained number of IRQs
Value of pdata->gpio_unbanked is taken from Device Tree. In case of broken
DT due to any error this value can be any. Without this value validation
there can be out of chips->irqs array boundaries access in
davinci_gpio_probe().
Validate the obtained nirq value so that it won't exceed the maximum
number of IRQs per bank.
Found by Linux Verification Center (linuxtesting.org) with SVACE. |
| In the Linux kernel, the following vulnerability has been resolved:
platform/x86: toshiba_acpi: Fix array out-of-bounds access
In order to use toshiba_dmi_quirks[] together with the standard DMI
matching functions, it must be terminated by a empty entry.
Since this entry is missing, an array out-of-bounds access occurs
every time the quirk list is processed.
Fix this by adding the terminating empty entry. |
| Duktape is an 3rd-party embeddable JavaScript engine, with a focus on portability and compact footprint. When adding too many values in valstack JavaScript will crash. This issue occurs due to bug in Duktape 2.6 which is an 3rd-party solution that we use. |
| In the Linux kernel, the following vulnerability has been resolved:
net: sched: fix ets qdisc OOB Indexing
Haowei Yan <g1042620637@gmail.com> found that ets_class_from_arg() can
index an Out-Of-Bound class in ets_class_from_arg() when passed clid of
0. The overflow may cause local privilege escalation.
[ 18.852298] ------------[ cut here ]------------
[ 18.853271] UBSAN: array-index-out-of-bounds in net/sched/sch_ets.c:93:20
[ 18.853743] index 18446744073709551615 is out of range for type 'ets_class [16]'
[ 18.854254] CPU: 0 UID: 0 PID: 1275 Comm: poc Not tainted 6.12.6-dirty #17
[ 18.854821] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.15.0-1 04/01/2014
[ 18.856532] Call Trace:
[ 18.857441] <TASK>
[ 18.858227] dump_stack_lvl+0xc2/0xf0
[ 18.859607] dump_stack+0x10/0x20
[ 18.860908] __ubsan_handle_out_of_bounds+0xa7/0xf0
[ 18.864022] ets_class_change+0x3d6/0x3f0
[ 18.864322] tc_ctl_tclass+0x251/0x910
[ 18.864587] ? lock_acquire+0x5e/0x140
[ 18.865113] ? __mutex_lock+0x9c/0xe70
[ 18.866009] ? __mutex_lock+0xa34/0xe70
[ 18.866401] rtnetlink_rcv_msg+0x170/0x6f0
[ 18.866806] ? __lock_acquire+0x578/0xc10
[ 18.867184] ? __pfx_rtnetlink_rcv_msg+0x10/0x10
[ 18.867503] netlink_rcv_skb+0x59/0x110
[ 18.867776] rtnetlink_rcv+0x15/0x30
[ 18.868159] netlink_unicast+0x1c3/0x2b0
[ 18.868440] netlink_sendmsg+0x239/0x4b0
[ 18.868721] ____sys_sendmsg+0x3e2/0x410
[ 18.869012] ___sys_sendmsg+0x88/0xe0
[ 18.869276] ? rseq_ip_fixup+0x198/0x260
[ 18.869563] ? rseq_update_cpu_node_id+0x10a/0x190
[ 18.869900] ? trace_hardirqs_off+0x5a/0xd0
[ 18.870196] ? syscall_exit_to_user_mode+0xcc/0x220
[ 18.870547] ? do_syscall_64+0x93/0x150
[ 18.870821] ? __memcg_slab_free_hook+0x69/0x290
[ 18.871157] __sys_sendmsg+0x69/0xd0
[ 18.871416] __x64_sys_sendmsg+0x1d/0x30
[ 18.871699] x64_sys_call+0x9e2/0x2670
[ 18.871979] do_syscall_64+0x87/0x150
[ 18.873280] ? do_syscall_64+0x93/0x150
[ 18.874742] ? lock_release+0x7b/0x160
[ 18.876157] ? do_user_addr_fault+0x5ce/0x8f0
[ 18.877833] ? irqentry_exit_to_user_mode+0xc2/0x210
[ 18.879608] ? irqentry_exit+0x77/0xb0
[ 18.879808] ? clear_bhb_loop+0x15/0x70
[ 18.880023] ? clear_bhb_loop+0x15/0x70
[ 18.880223] ? clear_bhb_loop+0x15/0x70
[ 18.880426] entry_SYSCALL_64_after_hwframe+0x76/0x7e
[ 18.880683] RIP: 0033:0x44a957
[ 18.880851] Code: ff ff e8 fc 00 00 00 66 2e 0f 1f 84 00 00 00 00 00 66 90 f3 0f 1e fa 64 8b 04 25 18 00 00 00 85 c0 75 10 b8 2e 00 00 00 0f 05 <48> 3d 00 f0 ff ff 77 51 c3 48 83 ec 28 89 54 24 1c 48 8974 24 10
[ 18.881766] RSP: 002b:00007ffcdd00fad8 EFLAGS: 00000246 ORIG_RAX: 000000000000002e
[ 18.882149] RAX: ffffffffffffffda RBX: 00007ffcdd010db8 RCX: 000000000044a957
[ 18.882507] RDX: 0000000000000000 RSI: 00007ffcdd00fb70 RDI: 0000000000000003
[ 18.885037] RBP: 00007ffcdd010bc0 R08: 000000000703c770 R09: 000000000703c7c0
[ 18.887203] R10: 0000000000000080 R11: 0000000000000246 R12: 0000000000000001
[ 18.888026] R13: 00007ffcdd010da8 R14: 00000000004ca7d0 R15: 0000000000000001
[ 18.888395] </TASK>
[ 18.888610] ---[ end trace ]--- |
| In the Linux kernel, the following vulnerability has been resolved:
pktgen: Avoid out-of-bounds access in get_imix_entries
Passing a sufficient amount of imix entries leads to invalid access to the
pkt_dev->imix_entries array because of the incorrect boundary check.
UBSAN: array-index-out-of-bounds in net/core/pktgen.c:874:24
index 20 is out of range for type 'imix_pkt [20]'
CPU: 2 PID: 1210 Comm: bash Not tainted 6.10.0-rc1 #121
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996)
Call Trace:
<TASK>
dump_stack_lvl lib/dump_stack.c:117
__ubsan_handle_out_of_bounds lib/ubsan.c:429
get_imix_entries net/core/pktgen.c:874
pktgen_if_write net/core/pktgen.c:1063
pde_write fs/proc/inode.c:334
proc_reg_write fs/proc/inode.c:346
vfs_write fs/read_write.c:593
ksys_write fs/read_write.c:644
do_syscall_64 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe arch/x86/entry/entry_64.S:130
Found by Linux Verification Center (linuxtesting.org) with SVACE.
[ fp: allow to fill the array completely; minor changelog cleanup ] |
| In the Linux kernel, the following vulnerability has been resolved:
MIPS: Loongson64: DTS: Really fix PCIe port nodes for ls7a
Fix the dtc warnings:
arch/mips/boot/dts/loongson/ls7a-pch.dtsi:68.16-416.5: Warning (interrupt_provider): /bus@10000000/pci@1a000000: '#interrupt-cells' found, but node is not an interrupt provider
arch/mips/boot/dts/loongson/ls7a-pch.dtsi:68.16-416.5: Warning (interrupt_provider): /bus@10000000/pci@1a000000: '#interrupt-cells' found, but node is not an interrupt provider
arch/mips/boot/dts/loongson/loongson64g_4core_ls7a.dtb: Warning (interrupt_map): Failed prerequisite 'interrupt_provider'
And a runtime warning introduced in commit 045b14ca5c36 ("of: WARN on
deprecated #address-cells/#size-cells handling"):
WARNING: CPU: 0 PID: 1 at drivers/of/base.c:106 of_bus_n_addr_cells+0x9c/0xe0
Missing '#address-cells' in /bus@10000000/pci@1a000000/pci_bridge@9,0
The fix is similar to commit d89a415ff8d5 ("MIPS: Loongson64: DTS: Fix PCIe
port nodes for ls7a"), which has fixed the issue for ls2k (despite its
subject mentions ls7a). |
| In the Linux kernel, the following vulnerability has been resolved:
powerpc/prom_init: Fixup missing powermac #size-cells
On some powermacs `escc` nodes are missing `#size-cells` properties,
which is deprecated and now triggers a warning at boot since commit
045b14ca5c36 ("of: WARN on deprecated #address-cells/#size-cells
handling").
For example:
Missing '#size-cells' in /pci@f2000000/mac-io@c/escc@13000
WARNING: CPU: 0 PID: 0 at drivers/of/base.c:133 of_bus_n_size_cells+0x98/0x108
Hardware name: PowerMac3,1 7400 0xc0209 PowerMac
...
Call Trace:
of_bus_n_size_cells+0x98/0x108 (unreliable)
of_bus_default_count_cells+0x40/0x60
__of_get_address+0xc8/0x21c
__of_address_to_resource+0x5c/0x228
pmz_init_port+0x5c/0x2ec
pmz_probe.isra.0+0x144/0x1e4
pmz_console_init+0x10/0x48
console_init+0xcc/0x138
start_kernel+0x5c4/0x694
As powermacs boot via prom_init it's possible to add the missing
properties to the device tree during boot, avoiding the warning. Note
that `escc-legacy` nodes are also missing `#size-cells` properties, but
they are skipped by the macio driver, so leave them alone.
Depends-on: 045b14ca5c36 ("of: WARN on deprecated #address-cells/#size-cells handling") |
| In the Linux kernel, the following vulnerability has been resolved:
drm/dp_mst: Fix MST sideband message body length check
Fix the MST sideband message body length check, which must be at least 1
byte accounting for the message body CRC (aka message data CRC) at the
end of the message.
This fixes a case where an MST branch device returns a header with a
correct header CRC (indicating a correctly received body length), with
the body length being incorrectly set to 0. This will later lead to a
memory corruption in drm_dp_sideband_append_payload() and the following
errors in dmesg:
UBSAN: array-index-out-of-bounds in drivers/gpu/drm/display/drm_dp_mst_topology.c:786:25
index -1 is out of range for type 'u8 [48]'
Call Trace:
drm_dp_sideband_append_payload+0x33d/0x350 [drm_display_helper]
drm_dp_get_one_sb_msg+0x3ce/0x5f0 [drm_display_helper]
drm_dp_mst_hpd_irq_handle_event+0xc8/0x1580 [drm_display_helper]
memcpy: detected field-spanning write (size 18446744073709551615) of single field "&msg->msg[msg->curlen]" at drivers/gpu/drm/display/drm_dp_mst_topology.c:791 (size 256)
Call Trace:
drm_dp_sideband_append_payload+0x324/0x350 [drm_display_helper]
drm_dp_get_one_sb_msg+0x3ce/0x5f0 [drm_display_helper]
drm_dp_mst_hpd_irq_handle_event+0xc8/0x1580 [drm_display_helper] |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: Fix out-of-bounds access in 'dcn21_link_encoder_create'
An issue was identified in the dcn21_link_encoder_create function where
an out-of-bounds access could occur when the hpd_source index was used
to reference the link_enc_hpd_regs array. This array has a fixed size
and the index was not being checked against the array's bounds before
accessing it.
This fix adds a conditional check to ensure that the hpd_source index is
within the valid range of the link_enc_hpd_regs array. If the index is
out of bounds, the function now returns NULL to prevent undefined
behavior.
References:
[ 65.920507] ------------[ cut here ]------------
[ 65.920510] UBSAN: array-index-out-of-bounds in drivers/gpu/drm/amd/amdgpu/../display/dc/resource/dcn21/dcn21_resource.c:1312:29
[ 65.920519] index 7 is out of range for type 'dcn10_link_enc_hpd_registers [5]'
[ 65.920523] CPU: 3 PID: 1178 Comm: modprobe Tainted: G OE 6.8.0-cleanershaderfeatureresetasdntipmi200nv2132 #13
[ 65.920525] Hardware name: AMD Majolica-RN/Majolica-RN, BIOS WMJ0429N_Weekly_20_04_2 04/29/2020
[ 65.920527] Call Trace:
[ 65.920529] <TASK>
[ 65.920532] dump_stack_lvl+0x48/0x70
[ 65.920541] dump_stack+0x10/0x20
[ 65.920543] __ubsan_handle_out_of_bounds+0xa2/0xe0
[ 65.920549] dcn21_link_encoder_create+0xd9/0x140 [amdgpu]
[ 65.921009] link_create+0x6d3/0xed0 [amdgpu]
[ 65.921355] create_links+0x18a/0x4e0 [amdgpu]
[ 65.921679] dc_create+0x360/0x720 [amdgpu]
[ 65.921999] ? dmi_matches+0xa0/0x220
[ 65.922004] amdgpu_dm_init+0x2b6/0x2c90 [amdgpu]
[ 65.922342] ? console_unlock+0x77/0x120
[ 65.922348] ? dev_printk_emit+0x86/0xb0
[ 65.922354] dm_hw_init+0x15/0x40 [amdgpu]
[ 65.922686] amdgpu_device_init+0x26a8/0x33a0 [amdgpu]
[ 65.922921] amdgpu_driver_load_kms+0x1b/0xa0 [amdgpu]
[ 65.923087] amdgpu_pci_probe+0x1b7/0x630 [amdgpu]
[ 65.923087] local_pci_probe+0x4b/0xb0
[ 65.923087] pci_device_probe+0xc8/0x280
[ 65.923087] really_probe+0x187/0x300
[ 65.923087] __driver_probe_device+0x85/0x130
[ 65.923087] driver_probe_device+0x24/0x110
[ 65.923087] __driver_attach+0xac/0x1d0
[ 65.923087] ? __pfx___driver_attach+0x10/0x10
[ 65.923087] bus_for_each_dev+0x7d/0xd0
[ 65.923087] driver_attach+0x1e/0x30
[ 65.923087] bus_add_driver+0xf2/0x200
[ 65.923087] driver_register+0x64/0x130
[ 65.923087] ? __pfx_amdgpu_init+0x10/0x10 [amdgpu]
[ 65.923087] __pci_register_driver+0x61/0x70
[ 65.923087] amdgpu_init+0x7d/0xff0 [amdgpu]
[ 65.923087] do_one_initcall+0x49/0x310
[ 65.923087] ? kmalloc_trace+0x136/0x360
[ 65.923087] do_init_module+0x6a/0x270
[ 65.923087] load_module+0x1fce/0x23a0
[ 65.923087] init_module_from_file+0x9c/0xe0
[ 65.923087] ? init_module_from_file+0x9c/0xe0
[ 65.923087] idempotent_init_module+0x179/0x230
[ 65.923087] __x64_sys_finit_module+0x5d/0xa0
[ 65.923087] do_syscall_64+0x76/0x120
[ 65.923087] entry_SYSCALL_64_after_hwframe+0x6e/0x76
[ 65.923087] RIP: 0033:0x7f2d80f1e88d
[ 65.923087] Code: 5b 41 5c c3 66 0f 1f 84 00 00 00 00 00 f3 0f 1e fa 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 8b 0d 73 b5 0f 00 f7 d8 64 89 01 48
[ 65.923087] RSP: 002b:00007ffc7bc1aa78 EFLAGS: 00000246 ORIG_RAX: 0000000000000139
[ 65.923087] RAX: ffffffffffffffda RBX: 0000564c9c1db130 RCX: 00007f2d80f1e88d
[ 65.923087] RDX: 0000000000000000 RSI: 0000564c9c1e5480 RDI: 000000000000000f
[ 65.923087] RBP: 0000000000040000 R08: 0000000000000000 R09: 0000000000000002
[ 65.923087] R10: 000000000000000f R11: 0000000000000246 R12: 0000564c9c1e5480
[ 65.923087] R13: 0000564c9c1db260 R14: 0000000000000000 R15: 0000564c9c1e54b0
[ 65.923087] </TASK>
[ 65.923927] ---[ end trace ]--- |
| In the Linux kernel, the following vulnerability has been resolved:
jfs: array-index-out-of-bounds fix in dtReadFirst
The value of stbl can be sometimes out of bounds due
to a bad filesystem. Added a check with appopriate return
of error code in that case. |
| In the Linux kernel, the following vulnerability has been resolved:
jfs: fix array-index-out-of-bounds in jfs_readdir
The stbl might contain some invalid values. Added a check to
return error code in that case. |
| In the Linux kernel, the following vulnerability has been resolved:
jfs: add a check to prevent array-index-out-of-bounds in dbAdjTree
When the value of lp is 0 at the beginning of the for loop, it will
become negative in the next assignment and we should bail out. |
| In the Linux kernel, the following vulnerability has been resolved:
vfio/pci: Properly hide first-in-list PCIe extended capability
There are cases where a PCIe extended capability should be hidden from
the user. For example, an unknown capability (i.e., capability with ID
greater than PCI_EXT_CAP_ID_MAX) or a capability that is intentionally
chosen to be hidden from the user.
Hiding a capability is done by virtualizing and modifying the 'Next
Capability Offset' field of the previous capability so it points to the
capability after the one that should be hidden.
The special case where the first capability in the list should be hidden
is handled differently because there is no previous capability that can
be modified. In this case, the capability ID and version are zeroed
while leaving the next pointer intact. This hides the capability and
leaves an anchor for the rest of the capability list.
However, today, hiding the first capability in the list is not done
properly if the capability is unknown, as struct
vfio_pci_core_device->pci_config_map is set to the capability ID during
initialization but the capability ID is not properly checked later when
used in vfio_config_do_rw(). This leads to the following warning [1] and
to an out-of-bounds access to ecap_perms array.
Fix it by checking cap_id in vfio_config_do_rw(), and if it is greater
than PCI_EXT_CAP_ID_MAX, use an alternative struct perm_bits for direct
read only access instead of the ecap_perms array.
Note that this is safe since the above is the only case where cap_id can
exceed PCI_EXT_CAP_ID_MAX (except for the special capabilities, which
are already checked before).
[1]
WARNING: CPU: 118 PID: 5329 at drivers/vfio/pci/vfio_pci_config.c:1900 vfio_pci_config_rw+0x395/0x430 [vfio_pci_core]
CPU: 118 UID: 0 PID: 5329 Comm: simx-qemu-syste Not tainted 6.12.0+ #1
(snip)
Call Trace:
<TASK>
? show_regs+0x69/0x80
? __warn+0x8d/0x140
? vfio_pci_config_rw+0x395/0x430 [vfio_pci_core]
? report_bug+0x18f/0x1a0
? handle_bug+0x63/0xa0
? exc_invalid_op+0x19/0x70
? asm_exc_invalid_op+0x1b/0x20
? vfio_pci_config_rw+0x395/0x430 [vfio_pci_core]
? vfio_pci_config_rw+0x244/0x430 [vfio_pci_core]
vfio_pci_rw+0x101/0x1b0 [vfio_pci_core]
vfio_pci_core_read+0x1d/0x30 [vfio_pci_core]
vfio_device_fops_read+0x27/0x40 [vfio]
vfs_read+0xbd/0x340
? vfio_device_fops_unl_ioctl+0xbb/0x740 [vfio]
? __rseq_handle_notify_resume+0xa4/0x4b0
__x64_sys_pread64+0x96/0xc0
x64_sys_call+0x1c3d/0x20d0
do_syscall_64+0x4d/0x120
entry_SYSCALL_64_after_hwframe+0x76/0x7e |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: ath9k: add range check for conn_rsp_epid in htc_connect_service()
I found the following bug in my fuzzer:
UBSAN: array-index-out-of-bounds in drivers/net/wireless/ath/ath9k/htc_hst.c:26:51
index 255 is out of range for type 'htc_endpoint [22]'
CPU: 0 UID: 0 PID: 8 Comm: kworker/0:0 Not tainted 6.11.0-rc6-dirty #14
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.15.0-1 04/01/2014
Workqueue: events request_firmware_work_func
Call Trace:
<TASK>
dump_stack_lvl+0x180/0x1b0
__ubsan_handle_out_of_bounds+0xd4/0x130
htc_issue_send.constprop.0+0x20c/0x230
? _raw_spin_unlock_irqrestore+0x3c/0x70
ath9k_wmi_cmd+0x41d/0x610
? mark_held_locks+0x9f/0xe0
...
Since this bug has been confirmed to be caused by insufficient verification
of conn_rsp_epid, I think it would be appropriate to add a range check for
conn_rsp_epid to htc_connect_service() to prevent the bug from occurring. |
| In the Linux kernel, the following vulnerability has been resolved:
clk: samsung: Fix UBSAN panic in samsung_clk_init()
With UBSAN_ARRAY_BOUNDS=y, I'm hitting the below panic due to
dereferencing `ctx->clk_data.hws` before setting
`ctx->clk_data.num = nr_clks`. Move that up to fix the crash.
UBSAN: array index out of bounds: 00000000f2005512 [#1] PREEMPT SMP
<snip>
Call trace:
samsung_clk_init+0x110/0x124 (P)
samsung_clk_init+0x48/0x124 (L)
samsung_cmu_register_one+0x3c/0xa0
exynos_arm64_register_cmu+0x54/0x64
__gs101_cmu_top_of_clk_init_declare+0x28/0x60
... |
| In the Linux kernel, the following vulnerability has been resolved:
x86/microcode/AMD: Fix out-of-bounds on systems with CPU-less NUMA nodes
Currently, load_microcode_amd() iterates over all NUMA nodes, retrieves their
CPU masks and unconditionally accesses per-CPU data for the first CPU of each
mask.
According to Documentation/admin-guide/mm/numaperf.rst:
"Some memory may share the same node as a CPU, and others are provided as
memory only nodes."
Therefore, some node CPU masks may be empty and wouldn't have a "first CPU".
On a machine with far memory (and therefore CPU-less NUMA nodes):
- cpumask_of_node(nid) is 0
- cpumask_first(0) is CONFIG_NR_CPUS
- cpu_data(CONFIG_NR_CPUS) accesses the cpu_info per-CPU array at an
index that is 1 out of bounds
This does not have any security implications since flashing microcode is
a privileged operation but I believe this has reliability implications by
potentially corrupting memory while flashing a microcode update.
When booting with CONFIG_UBSAN_BOUNDS=y on an AMD machine that flashes
a microcode update. I get the following splat:
UBSAN: array-index-out-of-bounds in arch/x86/kernel/cpu/microcode/amd.c:X:Y
index 512 is out of range for type 'unsigned long[512]'
[...]
Call Trace:
dump_stack
__ubsan_handle_out_of_bounds
load_microcode_amd
request_microcode_amd
reload_store
kernfs_fop_write_iter
vfs_write
ksys_write
do_syscall_64
entry_SYSCALL_64_after_hwframe
Change the loop to go over only NUMA nodes which have CPUs before determining
whether the first CPU on the respective node needs microcode update.
[ bp: Massage commit message, fix typo. ] |
| In the Linux kernel, the following vulnerability has been resolved:
net_sched: sch_sfq: don't allow 1 packet limit
The current implementation does not work correctly with a limit of
1. iproute2 actually checks for this and this patch adds the check in
kernel as well.
This fixes the following syzkaller reported crash:
UBSAN: array-index-out-of-bounds in net/sched/sch_sfq.c:210:6
index 65535 is out of range for type 'struct sfq_head[128]'
CPU: 0 PID: 2569 Comm: syz-executor101 Not tainted 5.10.0-smp-DEV #1
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 09/13/2024
Call Trace:
__dump_stack lib/dump_stack.c:79 [inline]
dump_stack+0x125/0x19f lib/dump_stack.c:120
ubsan_epilogue lib/ubsan.c:148 [inline]
__ubsan_handle_out_of_bounds+0xed/0x120 lib/ubsan.c:347
sfq_link net/sched/sch_sfq.c:210 [inline]
sfq_dec+0x528/0x600 net/sched/sch_sfq.c:238
sfq_dequeue+0x39b/0x9d0 net/sched/sch_sfq.c:500
sfq_reset+0x13/0x50 net/sched/sch_sfq.c:525
qdisc_reset+0xfe/0x510 net/sched/sch_generic.c:1026
tbf_reset+0x3d/0x100 net/sched/sch_tbf.c:319
qdisc_reset+0xfe/0x510 net/sched/sch_generic.c:1026
dev_reset_queue+0x8c/0x140 net/sched/sch_generic.c:1296
netdev_for_each_tx_queue include/linux/netdevice.h:2350 [inline]
dev_deactivate_many+0x6dc/0xc20 net/sched/sch_generic.c:1362
__dev_close_many+0x214/0x350 net/core/dev.c:1468
dev_close_many+0x207/0x510 net/core/dev.c:1506
unregister_netdevice_many+0x40f/0x16b0 net/core/dev.c:10738
unregister_netdevice_queue+0x2be/0x310 net/core/dev.c:10695
unregister_netdevice include/linux/netdevice.h:2893 [inline]
__tun_detach+0x6b6/0x1600 drivers/net/tun.c:689
tun_detach drivers/net/tun.c:705 [inline]
tun_chr_close+0x104/0x1b0 drivers/net/tun.c:3640
__fput+0x203/0x840 fs/file_table.c:280
task_work_run+0x129/0x1b0 kernel/task_work.c:185
exit_task_work include/linux/task_work.h:33 [inline]
do_exit+0x5ce/0x2200 kernel/exit.c:931
do_group_exit+0x144/0x310 kernel/exit.c:1046
__do_sys_exit_group kernel/exit.c:1057 [inline]
__se_sys_exit_group kernel/exit.c:1055 [inline]
__x64_sys_exit_group+0x3b/0x40 kernel/exit.c:1055
do_syscall_64+0x6c/0xd0
entry_SYSCALL_64_after_hwframe+0x61/0xcb
RIP: 0033:0x7fe5e7b52479
Code: Unable to access opcode bytes at RIP 0x7fe5e7b5244f.
RSP: 002b:00007ffd3c800398 EFLAGS: 00000246 ORIG_RAX: 00000000000000e7
RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007fe5e7b52479
RDX: 000000000000003c RSI: 00000000000000e7 RDI: 0000000000000000
RBP: 00007fe5e7bcd2d0 R08: ffffffffffffffb8 R09: 0000000000000014
R10: 0000000000000000 R11: 0000000000000246 R12: 00007fe5e7bcd2d0
R13: 0000000000000000 R14: 00007fe5e7bcdd20 R15: 00007fe5e7b24270
The crash can be also be reproduced with the following (with a tc
recompiled to allow for sfq limits of 1):
tc qdisc add dev dummy0 handle 1: root tbf rate 1Kbit burst 100b lat 1s
../iproute2-6.9.0/tc/tc qdisc add dev dummy0 handle 2: parent 1:10 sfq limit 1
ifconfig dummy0 up
ping -I dummy0 -f -c2 -W0.1 8.8.8.8
sleep 1
Scenario that triggers the crash:
* the first packet is sent and queued in TBF and SFQ; qdisc qlen is 1
* TBF dequeues: it peeks from SFQ which moves the packet to the
gso_skb list and keeps qdisc qlen set to 1. TBF is out of tokens so
it schedules itself for later.
* the second packet is sent and TBF tries to queues it to SFQ. qdisc
qlen is now 2 and because the SFQ limit is 1 the packet is dropped
by SFQ. At this point qlen is 1, and all of the SFQ slots are empty,
however q->tail is not NULL.
At this point, assuming no more packets are queued, when sch_dequeue
runs again it will decrement the qlen for the current empty slot
causing an underflow and the subsequent out of bounds access. |
| In the Linux kernel, the following vulnerability has been resolved:
usb: typec: fix potential array underflow in ucsi_ccg_sync_control()
The "command" variable can be controlled by the user via debugfs. The
worry is that if con_index is zero then "&uc->ucsi->connector[con_index
- 1]" would be an array underflow. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: Stop amdgpu_dm initialize when link nums greater than max_links
[Why]
Coverity report OVERRUN warning. There are
only max_links elements within dc->links. link
count could up to AMDGPU_DM_MAX_DISPLAY_INDEX 31.
[How]
Make sure link count less than max_links. |
| cJSON 1.5.0 through 1.7.18 allows out-of-bounds access via the decode_array_index_from_pointer function in cJSON_Utils.c, allowing remote attackers to bypass array bounds checking and access restricted data via malformed JSON pointer strings containing alphanumeric characters. |