Total
559 CVE
CVE | Vendors | Products | Updated | CVSS v3.1 |
---|---|---|---|---|
CVE-2021-47483 | 2024-11-04 | 4.4 Medium | ||
In the Linux kernel, the following vulnerability has been resolved: regmap: Fix possible double-free in regcache_rbtree_exit() In regcache_rbtree_insert_to_block(), when 'present' realloc failed, the 'blk' which is supposed to assign to 'rbnode->block' will be freed, so 'rbnode->block' points a freed memory, in the error handling path of regcache_rbtree_init(), 'rbnode->block' will be freed again in regcache_rbtree_exit(), KASAN will report double-free as follows: BUG: KASAN: double-free or invalid-free in kfree+0xce/0x390 Call Trace: slab_free_freelist_hook+0x10d/0x240 kfree+0xce/0x390 regcache_rbtree_exit+0x15d/0x1a0 regcache_rbtree_init+0x224/0x2c0 regcache_init+0x88d/0x1310 __regmap_init+0x3151/0x4a80 __devm_regmap_init+0x7d/0x100 madera_spi_probe+0x10f/0x333 [madera_spi] spi_probe+0x183/0x210 really_probe+0x285/0xc30 To fix this, moving up the assignment of rbnode->block to immediately after the reallocation has succeeded so that the data structure stays valid even if the second reallocation fails. | ||||
CVE-2021-47473 | 2024-11-04 | 4.4 Medium | ||
In the Linux kernel, the following vulnerability has been resolved: scsi: qla2xxx: Fix a memory leak in an error path of qla2x00_process_els() Commit 8c0eb596baa5 ("[SCSI] qla2xxx: Fix a memory leak in an error path of qla2x00_process_els()"), intended to change: bsg_job->request->msgcode == FC_BSG_HST_ELS_NOLOGIN bsg_job->request->msgcode != FC_BSG_RPT_ELS but changed it to: bsg_job->request->msgcode == FC_BSG_RPT_ELS instead. Change the == to a != to avoid leaking the fcport structure or freeing unallocated memory. | ||||
CVE-2021-47123 | 2024-11-04 | 7.1 High | ||
In the Linux kernel, the following vulnerability has been resolved: io_uring: fix ltout double free on completion race Always remove linked timeout on io_link_timeout_fn() from the master request link list, otherwise we may get use-after-free when first io_link_timeout_fn() puts linked timeout in the fail path, and then will be found and put on master's free. | ||||
CVE-2021-47082 | 2024-11-04 | 4.4 Medium | ||
In the Linux kernel, the following vulnerability has been resolved: tun: avoid double free in tun_free_netdev Avoid double free in tun_free_netdev() by moving the dev->tstats and tun->security allocs to a new ndo_init routine (tun_net_init()) that will be called by register_netdevice(). ndo_init is paired with the desctructor (tun_free_netdev()), so if there's an error in register_netdevice() the destructor will handle the frees. BUG: KASAN: double-free or invalid-free in selinux_tun_dev_free_security+0x1a/0x20 security/selinux/hooks.c:5605 CPU: 0 PID: 25750 Comm: syz-executor416 Not tainted 5.16.0-rc2-syzk #1 Hardware name: Red Hat KVM, BIOS Call Trace: <TASK> __dump_stack lib/dump_stack.c:88 [inline] dump_stack_lvl+0x89/0xb5 lib/dump_stack.c:106 print_address_description.constprop.9+0x28/0x160 mm/kasan/report.c:247 kasan_report_invalid_free+0x55/0x80 mm/kasan/report.c:372 ____kasan_slab_free mm/kasan/common.c:346 [inline] __kasan_slab_free+0x107/0x120 mm/kasan/common.c:374 kasan_slab_free include/linux/kasan.h:235 [inline] slab_free_hook mm/slub.c:1723 [inline] slab_free_freelist_hook mm/slub.c:1749 [inline] slab_free mm/slub.c:3513 [inline] kfree+0xac/0x2d0 mm/slub.c:4561 selinux_tun_dev_free_security+0x1a/0x20 security/selinux/hooks.c:5605 security_tun_dev_free_security+0x4f/0x90 security/security.c:2342 tun_free_netdev+0xe6/0x150 drivers/net/tun.c:2215 netdev_run_todo+0x4df/0x840 net/core/dev.c:10627 rtnl_unlock+0x13/0x20 net/core/rtnetlink.c:112 __tun_chr_ioctl+0x80c/0x2870 drivers/net/tun.c:3302 tun_chr_ioctl+0x2f/0x40 drivers/net/tun.c:3311 vfs_ioctl fs/ioctl.c:51 [inline] __do_sys_ioctl fs/ioctl.c:874 [inline] __se_sys_ioctl fs/ioctl.c:860 [inline] __x64_sys_ioctl+0x19d/0x220 fs/ioctl.c:860 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x3a/0x80 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x44/0xae | ||||
CVE-2021-46979 | 2024-11-04 | 4.4 Medium | ||
In the Linux kernel, the following vulnerability has been resolved: iio: core: fix ioctl handlers removal Currently ioctl handlers are removed twice. For the first time during iio_device_unregister() then later on inside iio_device_unregister_eventset() and iio_buffers_free_sysfs_and_mask(). Double free leads to kernel panic. Fix this by not touching ioctl handlers list directly but rather letting code responsible for registration call the matching cleanup routine itself. | ||||
CVE-2021-46938 | 1 Linux | 1 Linux Kernel | 2024-11-04 | 7.8 High |
In the Linux kernel, the following vulnerability has been resolved: dm rq: fix double free of blk_mq_tag_set in dev remove after table load fails When loading a device-mapper table for a request-based mapped device, and the allocation/initialization of the blk_mq_tag_set for the device fails, a following device remove will cause a double free. E.g. (dmesg): device-mapper: core: Cannot initialize queue for request-based dm-mq mapped device device-mapper: ioctl: unable to set up device queue for new table. Unable to handle kernel pointer dereference in virtual kernel address space Failing address: 0305e098835de000 TEID: 0305e098835de803 Fault in home space mode while using kernel ASCE. AS:000000025efe0007 R3:0000000000000024 Oops: 0038 ilc:3 [#1] SMP Modules linked in: ... lots of modules ... Supported: Yes, External CPU: 0 PID: 7348 Comm: multipathd Kdump: loaded Tainted: G W X 5.3.18-53-default #1 SLE15-SP3 Hardware name: IBM 8561 T01 7I2 (LPAR) Krnl PSW : 0704e00180000000 000000025e368eca (kfree+0x42/0x330) R:0 T:1 IO:1 EX:1 Key:0 M:1 W:0 P:0 AS:3 CC:2 PM:0 RI:0 EA:3 Krnl GPRS: 000000000000004a 000000025efe5230 c1773200d779968d 0000000000000000 000000025e520270 000000025e8d1b40 0000000000000003 00000007aae10000 000000025e5202a2 0000000000000001 c1773200d779968d 0305e098835de640 00000007a8170000 000003ff80138650 000000025e5202a2 000003e00396faa8 Krnl Code: 000000025e368eb8: c4180041e100 lgrl %r1,25eba50b8 000000025e368ebe: ecba06b93a55 risbg %r11,%r10,6,185,58 #000000025e368ec4: e3b010000008 ag %r11,0(%r1) >000000025e368eca: e310b0080004 lg %r1,8(%r11) 000000025e368ed0: a7110001 tmll %r1,1 000000025e368ed4: a7740129 brc 7,25e369126 000000025e368ed8: e320b0080004 lg %r2,8(%r11) 000000025e368ede: b904001b lgr %r1,%r11 Call Trace: [<000000025e368eca>] kfree+0x42/0x330 [<000000025e5202a2>] blk_mq_free_tag_set+0x72/0xb8 [<000003ff801316a8>] dm_mq_cleanup_mapped_device+0x38/0x50 [dm_mod] [<000003ff80120082>] free_dev+0x52/0xd0 [dm_mod] [<000003ff801233f0>] __dm_destroy+0x150/0x1d0 [dm_mod] [<000003ff8012bb9a>] dev_remove+0x162/0x1c0 [dm_mod] [<000003ff8012a988>] ctl_ioctl+0x198/0x478 [dm_mod] [<000003ff8012ac8a>] dm_ctl_ioctl+0x22/0x38 [dm_mod] [<000000025e3b11ee>] ksys_ioctl+0xbe/0xe0 [<000000025e3b127a>] __s390x_sys_ioctl+0x2a/0x40 [<000000025e8c15ac>] system_call+0xd8/0x2c8 Last Breaking-Event-Address: [<000000025e52029c>] blk_mq_free_tag_set+0x6c/0xb8 Kernel panic - not syncing: Fatal exception: panic_on_oops When allocation/initialization of the blk_mq_tag_set fails in dm_mq_init_request_queue(), it is uninitialized/freed, but the pointer is not reset to NULL; so when dev_remove() later gets into dm_mq_cleanup_mapped_device() it sees the pointer and tries to uninitialize and free it again. Fix this by setting the pointer to NULL in dm_mq_init_request_queue() error-handling. Also set it to NULL in dm_mq_cleanup_mapped_device(). | ||||
CVE-2024-3935 | 1 Eclipse Foundation | 1 Mosquitto | 2024-11-01 | 7.5 High |
In Eclipse Mosquito, versions from 2.0.0 through 2.0.18, if a Mosquitto broker is configured to create an outgoing bridge connection, and that bridge connection has an incoming topic configured that makes use of topic remapping, then if the remote connection sends a crafted PUBLISH packet to the broker a double free will occur with a subsequent crash of the broker. | ||||
CVE-2014-9807 | 1 Imagemagick | 1 Imagemagick | 2024-10-31 | 5.5 Medium |
The pdb coder in ImageMagick allows remote attackers to cause a denial of service (double free) via unspecified vectors. | ||||
CVE-2022-20803 | 1 Clamav | 1 Clamav | 2024-10-28 | 8.6 High |
A vulnerability in the OLE2 file parser of Clam AntiVirus (ClamAV) versions 0.104.0 through 0.104.2 could allow an unauthenticated, remote attacker to cause a denial of service condition on an affected device.The vulnerability is due to incorrect use of the realloc function that may result in a double-free. An attacker could exploit this vulnerability by submitting a crafted OLE2 file to be scanned by ClamAV on the affected device. An exploit could allow the attacker to cause the ClamAV scanning process to crash, resulting in a denial of service condition. | ||||
CVE-2023-38434 | 2 Linux, Xhttp Project | 2 Linux Kernel, Xhttp | 2024-10-28 | 7.5 High |
xHTTP 72f812d has a double free in close_connection in xhttp.c via a malformed HTTP request method. | ||||
CVE-2024-44098 | 1 Google | 2 Android, Pixel | 2024-10-25 | 7.4 High |
In lwis_device_event_states_clear_locked of lwis_event.c, there is a possible privilege escalation due to a double free. This could lead to local escalation of privilege with no additional execution privileges needed. User interaction is not needed for exploitation. | ||||
CVE-2022-40683 | 1 Fortinet | 1 Fortiweb | 2024-10-23 | 7.1 High |
A double free in Fortinet FortiWeb version 7.0.0 through 7.0.3 may allows attacker to execute unauthorized code or commands via specially crafted commands | ||||
CVE-2009-1544 | 1 Microsoft | 4 Windows 2003 Server, Windows Server 2008, Windows Vista and 1 more | 2024-10-21 | 8.8 High |
Double free vulnerability in the Workstation service in Microsoft Windows allows remote authenticated users to gain privileges via a crafted RPC message to a Windows XP SP2 or SP3 or Server 2003 SP2 system, or cause a denial of service via a crafted RPC message to a Vista Gold, SP1, or SP2 or Server 2008 Gold or SP2 system, aka "Workstation Service Memory Corruption Vulnerability." | ||||
CVE-2024-3187 | 2024-10-18 | 5.9 Medium | ||
This issue tracks two CWE-416 Use After Free (UAF) and one CWE-415 Double Free vulnerabilities in Goahead versions <= 6.0.0. These are caused by JST values not being nulled when freed during parsing of JST templates. If the ME_GOAHEAD_JAVASCRIPT flag is enabled, a remote attacker with the privileges to modify JavaScript template (JST) files could exploit this by providing malicious templates. This may lead to memory corruption, potentially causing a Denial of Service (DoS) or, in rare cases, code execution, though the latter is highly context-dependent. | ||||
CVE-2024-23379 | 1 Qualcomm | 68 Fastconnect 6900, Fastconnect 6900 Firmware, Fastconnect 7800 and 65 more | 2024-10-16 | 6.7 Medium |
Memory corruption while unmapping the fastrpc map when two threads can free the same map in concurrent scenario. | ||||
CVE-2024-38157 | 1 Microsoft | 2 Azure Iot Hub Device Client Sdk, Csharp Software Development Kit | 2024-10-16 | 7 High |
Azure IoT SDK Remote Code Execution Vulnerability | ||||
CVE-2023-4389 | 2 Linux, Redhat | 2 Linux Kernel, Enterprise Linux | 2024-10-15 | 7 High |
A flaw was found in btrfs_get_root_ref in fs/btrfs/disk-io.c in the btrfs filesystem in the Linux Kernel due to a double decrement of the reference count. This issue may allow a local attacker with user privilege to crash the system or may lead to leaked internal kernel information. | ||||
CVE-2024-26257 | 1 Microsoft | 2 365 Apps, Office Long Term Servicing Channel | 2024-10-09 | 7.8 High |
Microsoft Excel Remote Code Execution Vulnerability | ||||
CVE-2024-38247 | 1 Microsoft | 24 Windows 10 1507, Windows 10 1607, Windows 10 1809 and 21 more | 2024-10-09 | 7.8 High |
Windows Graphics Component Elevation of Privilege Vulnerability | ||||
CVE-2024-20498 | 1 Cisco | 52 Meraki Mx, Meraki Mx100, Meraki Mx100 Firmware and 49 more | 2024-10-08 | 8.6 High |
Multiple vulnerabilities in the Cisco AnyConnect VPN server of Cisco Meraki MX and Cisco Meraki Z Series Teleworker Gateway devices could allow an unauthenticated, remote attacker to cause a DoS condition in the AnyConnect service on an affected device. These vulnerabilities are due to insufficient validation of client-supplied parameters while establishing an SSL VPN session. An attacker could exploit these vulnerabilities by sending a crafted HTTPS request to the VPN server of an affected device. A successful exploit could allow the attacker to cause the Cisco AnyConnect VPN server to restart, resulting in the failure of the established SSL VPN connections and forcing remote users to initiate a new VPN connection and reauthenticate. A sustained attack could prevent new SSL VPN connections from being established. Note: When the attack traffic stops, the Cisco AnyConnect VPN server recovers gracefully without requiring manual intervention. |