| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
afs: Fix lock recursion
afs_wake_up_async_call() can incur lock recursion. The problem is that it
is called from AF_RXRPC whilst holding the ->notify_lock, but it tries to
take a ref on the afs_call struct in order to pass it to a work queue - but
if the afs_call is already queued, we then have an extraneous ref that must
be put... calling afs_put_call() may call back down into AF_RXRPC through
rxrpc_kernel_shutdown_call(), however, which might try taking the
->notify_lock again.
This case isn't very common, however, so defer it to a workqueue. The oops
looks something like:
BUG: spinlock recursion on CPU#0, krxrpcio/7001/1646
lock: 0xffff888141399b30, .magic: dead4ead, .owner: krxrpcio/7001/1646, .owner_cpu: 0
CPU: 0 UID: 0 PID: 1646 Comm: krxrpcio/7001 Not tainted 6.12.0-rc2-build3+ #4351
Hardware name: ASUS All Series/H97-PLUS, BIOS 2306 10/09/2014
Call Trace:
<TASK>
dump_stack_lvl+0x47/0x70
do_raw_spin_lock+0x3c/0x90
rxrpc_kernel_shutdown_call+0x83/0xb0
afs_put_call+0xd7/0x180
rxrpc_notify_socket+0xa0/0x190
rxrpc_input_split_jumbo+0x198/0x1d0
rxrpc_input_data+0x14b/0x1e0
? rxrpc_input_call_packet+0xc2/0x1f0
rxrpc_input_call_event+0xad/0x6b0
rxrpc_input_packet_on_conn+0x1e1/0x210
rxrpc_input_packet+0x3f2/0x4d0
rxrpc_io_thread+0x243/0x410
? __pfx_rxrpc_io_thread+0x10/0x10
kthread+0xcf/0xe0
? __pfx_kthread+0x10/0x10
ret_from_fork+0x24/0x40
? __pfx_kthread+0x10/0x10
ret_from_fork_asm+0x1a/0x30
</TASK> |
| In the Linux kernel, the following vulnerability has been resolved:
net/sched: sch_api: fix xa_insert() error path in tcf_block_get_ext()
This command:
$ tc qdisc replace dev eth0 ingress_block 1 egress_block 1 clsact
Error: block dev insert failed: -EBUSY.
fails because user space requests the same block index to be set for
both ingress and egress.
[ side note, I don't think it even failed prior to commit 913b47d3424e
("net/sched: Introduce tc block netdev tracking infra"), because this
is a command from an old set of notes of mine which used to work, but
alas, I did not scientifically bisect this ]
The problem is not that it fails, but rather, that the second time
around, it fails differently (and irrecoverably):
$ tc qdisc replace dev eth0 ingress_block 1 egress_block 1 clsact
Error: dsa_core: Flow block cb is busy.
[ another note: the extack is added by me for illustration purposes.
the context of the problem is that clsact_init() obtains the same
&q->ingress_block pointer as &q->egress_block, and since we call
tcf_block_get_ext() on both of them, "dev" will be added to the
block->ports xarray twice, thus failing the operation: once through
the ingress block pointer, and once again through the egress block
pointer. the problem itself is that when xa_insert() fails, we have
emitted a FLOW_BLOCK_BIND command through ndo_setup_tc(), but the
offload never sees a corresponding FLOW_BLOCK_UNBIND. ]
Even correcting the bad user input, we still cannot recover:
$ tc qdisc replace dev swp3 ingress_block 1 egress_block 2 clsact
Error: dsa_core: Flow block cb is busy.
Basically the only way to recover is to reboot the system, or unbind and
rebind the net device driver.
To fix the bug, we need to fill the correct error teardown path which
was missed during code movement, and call tcf_block_offload_unbind()
when xa_insert() fails.
[ last note, fundamentally I blame the label naming convention in
tcf_block_get_ext() for the bug. The labels should be named after what
they do, not after the error path that jumps to them. This way, it is
obviously wrong that two labels pointing to the same code mean
something is wrong, and checking the code correctness at the goto site
is also easier ] |
| In the Linux kernel, the following vulnerability has been resolved:
io_uring/sqpoll: ensure task state is TASK_RUNNING when running task_work
When the sqpoll is exiting and cancels pending work items, it may need
to run task_work. If this happens from within io_uring_cancel_generic(),
then it may be under waiting for the io_uring_task waitqueue. This
results in the below splat from the scheduler, as the ring mutex may be
attempted grabbed while in a TASK_INTERRUPTIBLE state.
Ensure that the task state is set appropriately for that, just like what
is done for the other cases in io_run_task_work().
do not call blocking ops when !TASK_RUNNING; state=1 set at [<0000000029387fd2>] prepare_to_wait+0x88/0x2fc
WARNING: CPU: 6 PID: 59939 at kernel/sched/core.c:8561 __might_sleep+0xf4/0x140
Modules linked in:
CPU: 6 UID: 0 PID: 59939 Comm: iou-sqp-59938 Not tainted 6.12.0-rc3-00113-g8d020023b155 #7456
Hardware name: linux,dummy-virt (DT)
pstate: 61400005 (nZCv daif +PAN -UAO -TCO +DIT -SSBS BTYPE=--)
pc : __might_sleep+0xf4/0x140
lr : __might_sleep+0xf4/0x140
sp : ffff80008c5e7830
x29: ffff80008c5e7830 x28: ffff0000d93088c0 x27: ffff60001c2d7230
x26: dfff800000000000 x25: ffff0000e16b9180 x24: ffff80008c5e7a50
x23: 1ffff000118bcf4a x22: ffff0000e16b9180 x21: ffff0000e16b9180
x20: 000000000000011b x19: ffff80008310fac0 x18: 1ffff000118bcd90
x17: 30303c5b20746120 x16: 74657320313d6574 x15: 0720072007200720
x14: 0720072007200720 x13: 0720072007200720 x12: ffff600036c64f0b
x11: 1fffe00036c64f0a x10: ffff600036c64f0a x9 : dfff800000000000
x8 : 00009fffc939b0f6 x7 : ffff0001b6327853 x6 : 0000000000000001
x5 : ffff0001b6327850 x4 : ffff600036c64f0b x3 : ffff8000803c35bc
x2 : 0000000000000000 x1 : 0000000000000000 x0 : ffff0000e16b9180
Call trace:
__might_sleep+0xf4/0x140
mutex_lock+0x84/0x124
io_handle_tw_list+0xf4/0x260
tctx_task_work_run+0x94/0x340
io_run_task_work+0x1ec/0x3c0
io_uring_cancel_generic+0x364/0x524
io_sq_thread+0x820/0x124c
ret_from_fork+0x10/0x20 |
| In the Linux kernel, the following vulnerability has been resolved:
virtio_net: correct netdev_tx_reset_queue() invocation point
When virtnet_close is followed by virtnet_open, some TX completions can
possibly remain unconsumed, until they are finally processed during the
first NAPI poll after the netdev_tx_reset_queue(), resulting in a crash
[1]. Commit b96ed2c97c79 ("virtio_net: move netdev_tx_reset_queue() call
before RX napi enable") was not sufficient to eliminate all BQL crash
cases for virtio-net.
This issue can be reproduced with the latest net-next master by running:
`while :; do ip l set DEV down; ip l set DEV up; done` under heavy network
TX load from inside the machine.
netdev_tx_reset_queue() can actually be dropped from virtnet_open path;
the device is not stopped in any case. For BQL core part, it's just like
traffic nearly ceases to exist for some period. For stall detector added
to BQL, even if virtnet_close could somehow lead to some TX completions
delayed for long, followed by virtnet_open, we can just take it as stall
as mentioned in commit 6025b9135f7a ("net: dqs: add NIC stall detector
based on BQL"). Note also that users can still reset stall_max via sysfs.
So, drop netdev_tx_reset_queue() from virtnet_enable_queue_pair(). This
eliminates the BQL crashes. As a result, netdev_tx_reset_queue() is now
explicitly required in freeze/restore path. This patch adds it to
immediately after free_unused_bufs(), following the rule of thumb:
netdev_tx_reset_queue() should follow any SKB freeing not followed by
netdev_tx_completed_queue(). This seems the most consistent and
streamlined approach, and now netdev_tx_reset_queue() runs whenever
free_unused_bufs() is done.
[1]:
------------[ cut here ]------------
kernel BUG at lib/dynamic_queue_limits.c:99!
Oops: invalid opcode: 0000 [#1] PREEMPT SMP NOPTI
CPU: 7 UID: 0 PID: 1598 Comm: ip Tainted: G N 6.12.0net-next_main+ #2
Tainted: [N]=TEST
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), \
BIOS rel-1.16.3-0-ga6ed6b701f0a-prebuilt.qemu.org 04/01/2014
RIP: 0010:dql_completed+0x26b/0x290
Code: b7 c2 49 89 e9 44 89 da 89 c6 4c 89 d7 e8 ed 17 47 00 58 65 ff 0d
4d 27 90 7e 0f 85 fd fe ff ff e8 ea 53 8d ff e9 f3 fe ff ff <0f> 0b 01
d2 44 89 d1 29 d1 ba 00 00 00 00 0f 48 ca e9 28 ff ff ff
RSP: 0018:ffffc900002b0d08 EFLAGS: 00010297
RAX: 0000000000000000 RBX: ffff888102398c80 RCX: 0000000080190009
RDX: 0000000000000000 RSI: 000000000000006a RDI: 0000000000000000
RBP: ffff888102398c00 R08: 0000000000000000 R09: 0000000000000000
R10: 00000000000000ca R11: 0000000000015681 R12: 0000000000000001
R13: ffffc900002b0d68 R14: ffff88811115e000 R15: ffff8881107aca40
FS: 00007f41ded69500(0000) GS:ffff888667dc0000(0000)
knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000556ccc2dc1a0 CR3: 0000000104fd8003 CR4: 0000000000772ef0
PKRU: 55555554
Call Trace:
<IRQ>
? die+0x32/0x80
? do_trap+0xd9/0x100
? dql_completed+0x26b/0x290
? dql_completed+0x26b/0x290
? do_error_trap+0x6d/0xb0
? dql_completed+0x26b/0x290
? exc_invalid_op+0x4c/0x60
? dql_completed+0x26b/0x290
? asm_exc_invalid_op+0x16/0x20
? dql_completed+0x26b/0x290
__free_old_xmit+0xff/0x170 [virtio_net]
free_old_xmit+0x54/0xc0 [virtio_net]
virtnet_poll+0xf4/0xe30 [virtio_net]
? __update_load_avg_cfs_rq+0x264/0x2d0
? update_curr+0x35/0x260
? reweight_entity+0x1be/0x260
__napi_poll.constprop.0+0x28/0x1c0
net_rx_action+0x329/0x420
? enqueue_hrtimer+0x35/0x90
? trace_hardirqs_on+0x1d/0x80
? kvm_sched_clock_read+0xd/0x20
? sched_clock+0xc/0x30
? kvm_sched_clock_read+0xd/0x20
? sched_clock+0xc/0x30
? sched_clock_cpu+0xd/0x1a0
handle_softirqs+0x138/0x3e0
do_softirq.part.0+0x89/0xc0
</IRQ>
<TASK>
__local_bh_enable_ip+0xa7/0xb0
virtnet_open+0xc8/0x310 [virtio_net]
__dev_open+0xfa/0x1b0
__dev_change_flags+0x1de/0x250
dev_change_flags+0x22/0x60
do_setlink.isra.0+0x2df/0x10b0
? rtnetlink_rcv_msg+0x34f/0x3f0
? netlink_rcv_skb+0x54/0x100
? netlink_unicas
---truncated--- |
| Wasmtime is an open source runtime for WebAssembly. Wasmtime's implementation of WebAssembly tail calls combined with stack traces can result in a runtime crash in certain WebAssembly modules. The runtime crash may be undefined behavior if Wasmtime was compiled with Rust 1.80 or prior. The runtime crash is a deterministic process abort when Wasmtime is compiled with Rust 1.81 and later. WebAssembly tail calls are a proposal which relatively recently reached stage 4 in the standardization process. Wasmtime first enabled support for tail calls by default in Wasmtime 21.0.0, although that release contained a bug where it was only on-by-default for some configurations. In Wasmtime 22.0.0 tail calls were enabled by default for all configurations. The specific crash happens when an exported function in a WebAssembly module (or component) performs a `return_call` (or `return_call_indirect` or `return_call_ref`) to an imported host function which captures a stack trace (for example, the host function raises a trap). In this situation, the stack-walking code previously assumed there was always at least one WebAssembly frame on the stack but with tail calls that is no longer true. With the tail-call proposal it's possible to have an entry trampoline appear as if it directly called the exit trampoline. This situation triggers an internal assert in the stack-walking code which raises a Rust `panic!()`. When Wasmtime is compiled with Rust versions 1.80 and prior this means that an `extern "C"` function in Rust is raising a `panic!()`. This is technically undefined behavior and typically manifests as a process abort when the unwinder fails to unwind Cranelift-generated frames. When Wasmtime is compiled with Rust versions 1.81 and later this panic becomes a deterministic process abort. Overall the impact of this issue is that this is a denial-of-service vector where a malicious WebAssembly module or component can cause the host to crash. There is no other impact at this time other than availability of a service as the result of the crash is always a crash and no more. This issue was discovered by routine fuzzing performed by the Wasmtime project via Google's OSS-Fuzz infrastructure. We have no evidence that it has ever been exploited by an attacker in the wild. All versions of Wasmtime which have tail calls enabled by default have been patched: * 21.0.x - patched in 21.0.2 * 22.0.x - patched in 22.0.1 * 23.0.x - patched in 23.0.3 * 24.0.x - patched in 24.0.1 * 25.0.x - patched in 25.0.2. Wasmtime versions from 12.0.x (the first release with experimental tail call support) to 20.0.x (the last release with tail-calls off-by-default) have support for tail calls but the support is disabled by default. These versions are not affected in their default configurations, but users who explicitly enabled tail call support will need to either disable tail call support or upgrade to a patched version of Wasmtime. The main workaround for this issue is to disable tail support for tail calls in Wasmtime, for example with `Config::wasm_tail_call(false)`. Users are otherwise encouraged to upgrade to patched versions. |
| Any project that parses untrusted Protocol Buffers data containing an arbitrary number of nested groups / series of SGROUP tags can corrupted by exceeding the stack limit i.e. StackOverflow. Parsing nested groups as unknown fields with DiscardUnknownFieldsParser or Java Protobuf Lite parser, or against Protobuf map fields, creates unbounded recursions that can be abused by an attacker. |
| In the Linux kernel, the following vulnerability has been resolved:
net: USB: Fix wrong-direction WARNING in plusb.c
The syzbot fuzzer detected a bug in the plusb network driver: A
zero-length control-OUT transfer was treated as a read instead of a
write. In modern kernels this error provokes a WARNING:
usb 1-1: BOGUS control dir, pipe 80000280 doesn't match bRequestType c0
WARNING: CPU: 0 PID: 4645 at drivers/usb/core/urb.c:411
usb_submit_urb+0x14a7/0x1880 drivers/usb/core/urb.c:411
Modules linked in:
CPU: 1 PID: 4645 Comm: dhcpcd Not tainted
6.2.0-rc6-syzkaller-00050-g9f266ccaa2f5 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google
01/12/2023
RIP: 0010:usb_submit_urb+0x14a7/0x1880 drivers/usb/core/urb.c:411
...
Call Trace:
<TASK>
usb_start_wait_urb+0x101/0x4b0 drivers/usb/core/message.c:58
usb_internal_control_msg drivers/usb/core/message.c:102 [inline]
usb_control_msg+0x320/0x4a0 drivers/usb/core/message.c:153
__usbnet_read_cmd+0xb9/0x390 drivers/net/usb/usbnet.c:2010
usbnet_read_cmd+0x96/0xf0 drivers/net/usb/usbnet.c:2068
pl_vendor_req drivers/net/usb/plusb.c:60 [inline]
pl_set_QuickLink_features drivers/net/usb/plusb.c:75 [inline]
pl_reset+0x2f/0xf0 drivers/net/usb/plusb.c:85
usbnet_open+0xcc/0x5d0 drivers/net/usb/usbnet.c:889
__dev_open+0x297/0x4d0 net/core/dev.c:1417
__dev_change_flags+0x587/0x750 net/core/dev.c:8530
dev_change_flags+0x97/0x170 net/core/dev.c:8602
devinet_ioctl+0x15a2/0x1d70 net/ipv4/devinet.c:1147
inet_ioctl+0x33f/0x380 net/ipv4/af_inet.c:979
sock_do_ioctl+0xcc/0x230 net/socket.c:1169
sock_ioctl+0x1f8/0x680 net/socket.c:1286
vfs_ioctl fs/ioctl.c:51 [inline]
__do_sys_ioctl fs/ioctl.c:870 [inline]
__se_sys_ioctl fs/ioctl.c:856 [inline]
__x64_sys_ioctl+0x197/0x210 fs/ioctl.c:856
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x39/0xb0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
The fix is to call usbnet_write_cmd() instead of usbnet_read_cmd() and
remove the USB_DIR_IN flag. |
| In the Linux kernel, the following vulnerability has been resolved:
usb: config: fix iteration issue in 'usb_get_bos_descriptor()'
The BOS descriptor defines a root descriptor and is the base descriptor for
accessing a family of related descriptors.
Function 'usb_get_bos_descriptor()' encounters an iteration issue when
skipping the 'USB_DT_DEVICE_CAPABILITY' descriptor type. This results in
the same descriptor being read repeatedly.
To address this issue, a 'goto' statement is introduced to ensure that the
pointer and the amount read is updated correctly. This ensures that the
function iterates to the next descriptor instead of reading the same
descriptor repeatedly. |
| In the Linux kernel, the following vulnerability has been resolved:
KVM: PPC: Book3S HV: Fix stack handling in idle_kvm_start_guest()
In commit 10d91611f426 ("powerpc/64s: Reimplement book3s idle code in
C") kvm_start_guest() became idle_kvm_start_guest(). The old code
allocated a stack frame on the emergency stack, but didn't use the
frame to store anything, and also didn't store anything in its caller's
frame.
idle_kvm_start_guest() on the other hand is written more like a normal C
function, it creates a frame on entry, and also stores CR/LR into its
callers frame (per the ABI). The problem is that there is no caller
frame on the emergency stack.
The emergency stack for a given CPU is allocated with:
paca_ptrs[i]->emergency_sp = alloc_stack(limit, i) + THREAD_SIZE;
So emergency_sp actually points to the first address above the emergency
stack allocation for a given CPU, we must not store above it without
first decrementing it to create a frame. This is different to the
regular kernel stack, paca->kstack, which is initialised to point at an
initial frame that is ready to use.
idle_kvm_start_guest() stores the backchain, CR and LR all of which
write outside the allocation for the emergency stack. It then creates a
stack frame and saves the non-volatile registers. Unfortunately the
frame it creates is not large enough to fit the non-volatiles, and so
the saving of the non-volatile registers also writes outside the
emergency stack allocation.
The end result is that we corrupt whatever is at 0-24 bytes, and 112-248
bytes above the emergency stack allocation.
In practice this has gone unnoticed because the memory immediately above
the emergency stack happens to be used for other stack allocations,
either another CPUs mc_emergency_sp or an IRQ stack. See the order of
calls to irqstack_early_init() and emergency_stack_init().
The low addresses of another stack are the top of that stack, and so are
only used if that stack is under extreme pressue, which essentially
never happens in practice - and if it did there's a high likelyhood we'd
crash due to that stack overflowing.
Still, we shouldn't be corrupting someone else's stack, and it is purely
luck that we aren't corrupting something else.
To fix it we save CR/LR into the caller's frame using the existing r1 on
entry, we then create a SWITCH_FRAME_SIZE frame (which has space for
pt_regs) on the emergency stack with the backchain pointing to the
existing stack, and then finally we switch to the new frame on the
emergency stack. |
| VisiCut 2.1 allows stack consumption via an XML document with nested set elements, as demonstrated by a java.util.HashMap StackOverflowError when reference='../../../set/set[2]' is used, aka an "insecure deserialization" issue. |
| In the Linux kernel, the following vulnerability has been resolved:
riscv: VMAP_STACK overflow detection thread-safe
commit 31da94c25aea ("riscv: add VMAP_STACK overflow detection") added
support for CONFIG_VMAP_STACK. If overflow is detected, CPU switches to
`shadow_stack` temporarily before switching finally to per-cpu
`overflow_stack`.
If two CPUs/harts are racing and end up in over flowing kernel stack, one
or both will end up corrupting each other state because `shadow_stack` is
not per-cpu. This patch optimizes per-cpu overflow stack switch by
directly picking per-cpu `overflow_stack` and gets rid of `shadow_stack`.
Following are the changes in this patch
- Defines an asm macro to obtain per-cpu symbols in destination
register.
- In entry.S, when overflow is detected, per-cpu overflow stack is
located using per-cpu asm macro. Computing per-cpu symbol requires
a temporary register. x31 is saved away into CSR_SCRATCH
(CSR_SCRATCH is anyways zero since we're in kernel).
Please see Links for additional relevant disccussion and alternative
solution.
Tested by `echo EXHAUST_STACK > /sys/kernel/debug/provoke-crash/DIRECT`
Kernel crash log below
Insufficient stack space to handle exception!/debug/provoke-crash/DIRECT
Task stack: [0xff20000010a98000..0xff20000010a9c000]
Overflow stack: [0xff600001f7d98370..0xff600001f7d99370]
CPU: 1 PID: 205 Comm: bash Not tainted 6.1.0-rc2-00001-g328a1f96f7b9 #34
Hardware name: riscv-virtio,qemu (DT)
epc : __memset+0x60/0xfc
ra : recursive_loop+0x48/0xc6 [lkdtm]
epc : ffffffff808de0e4 ra : ffffffff0163a752 sp : ff20000010a97e80
gp : ffffffff815c0330 tp : ff600000820ea280 t0 : ff20000010a97e88
t1 : 000000000000002e t2 : 3233206874706564 s0 : ff20000010a982b0
s1 : 0000000000000012 a0 : ff20000010a97e88 a1 : 0000000000000000
a2 : 0000000000000400 a3 : ff20000010a98288 a4 : 0000000000000000
a5 : 0000000000000000 a6 : fffffffffffe43f0 a7 : 00007fffffffffff
s2 : ff20000010a97e88 s3 : ffffffff01644680 s4 : ff20000010a9be90
s5 : ff600000842ba6c0 s6 : 00aaaaaac29e42b0 s7 : 00fffffff0aa3684
s8 : 00aaaaaac2978040 s9 : 0000000000000065 s10: 00ffffff8a7cad10
s11: 00ffffff8a76a4e0 t3 : ffffffff815dbaf4 t4 : ffffffff815dbaf4
t5 : ffffffff815dbab8 t6 : ff20000010a9bb48
status: 0000000200000120 badaddr: ff20000010a97e88 cause: 000000000000000f
Kernel panic - not syncing: Kernel stack overflow
CPU: 1 PID: 205 Comm: bash Not tainted 6.1.0-rc2-00001-g328a1f96f7b9 #34
Hardware name: riscv-virtio,qemu (DT)
Call Trace:
[<ffffffff80006754>] dump_backtrace+0x30/0x38
[<ffffffff808de798>] show_stack+0x40/0x4c
[<ffffffff808ea2a8>] dump_stack_lvl+0x44/0x5c
[<ffffffff808ea2d8>] dump_stack+0x18/0x20
[<ffffffff808dec06>] panic+0x126/0x2fe
[<ffffffff800065ea>] walk_stackframe+0x0/0xf0
[<ffffffff0163a752>] recursive_loop+0x48/0xc6 [lkdtm]
SMP: stopping secondary CPUs
---[ end Kernel panic - not syncing: Kernel stack overflow ]--- |
| Connect2id Nimbus JOSE + JWT 10.0.x before 10.0.2 and 9.37.x before 9.37.4 allows a remote attacker to cause a denial of service via a deeply nested JSON object supplied in a JWT claim set, because of uncontrolled recursion. NOTE: this is independent of the Gson 2.11.0 issue because the Connect2id product could have checked the JSON object nesting depth, regardless of what limits (if any) were imposed by Gson. |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: hci_event: Ignore multiple conn complete events
When one of the three connection complete events is received multiple
times for the same handle, the device is registered multiple times which
leads to memory corruptions. Therefore, consequent events for a single
connection are ignored.
The conn->state can hold different values, therefore HCI_CONN_HANDLE_UNSET
is introduced to identify new connections. To make sure the events do not
contain this or another invalid handle HCI_CONN_HANDLE_MAX and checks
are introduced.
Buglink: https://bugzilla.kernel.org/show_bug.cgi?id=215497 |
| In the Linux kernel, the following vulnerability has been resolved:
misc: fastrpc: fix list iterator in fastrpc_req_mem_unmap_impl
This is another instance of incorrect use of list iterator and
checking it for NULL.
The list iterator value 'map' will *always* be set and non-NULL
by list_for_each_entry(), so it is incorrect to assume that the
iterator value will be NULL if the list is empty (in this case, the
check 'if (!map) {' will always be false and never exit as expected).
To fix the bug, use a new variable 'iter' as the list iterator,
while use the original variable 'map' as a dedicated pointer to
point to the found element.
Without this patch, Kernel crashes with below trace:
Unable to handle kernel access to user memory outside uaccess routines
at virtual address 0000ffff7fb03750
...
Call trace:
fastrpc_map_create+0x70/0x290 [fastrpc]
fastrpc_req_mem_map+0xf0/0x2dc [fastrpc]
fastrpc_device_ioctl+0x138/0xc60 [fastrpc]
__arm64_sys_ioctl+0xa8/0xec
invoke_syscall+0x48/0x114
el0_svc_common.constprop.0+0xd4/0xfc
do_el0_svc+0x28/0x90
el0_svc+0x3c/0x130
el0t_64_sync_handler+0xa4/0x130
el0t_64_sync+0x18c/0x190
Code: 14000016 f94000a5 eb05029f 54000260 (b94018a6)
---[ end trace 0000000000000000 ]--- |
| An issue in phiola/src/afilter/conv.c:115 of phiola v2.0-rc22 allows a remote attacker to cause a denial of service via a crafted .wav file. |
| An issue in the anchors subparser of Showdownjs versions <= 2.1.0 could allow a remote attacker to cause denial of service conditions.
|
| orjson.loads in orjson before 3.9.15 does not limit recursion for deeply nested JSON documents. |
| MongoDB Server may allow upsert operations retried within a transaction to violate unique index constraints, potentially causing an invariant failure and server crash during commit. This issue may be triggered by improper WriteUnitOfWork state management. This issue affects MongoDB Server v6.0 versions prior to 6.0.25, MongoDB Server v7.0 versions prior to 7.0.22 and MongoDB Server v8.0 versions prior to 8.0.12 |
| In Alludo MindManager before 25.0.208 on Windows, attackers could potentially execute code as other local users on the same machine if they could write DLL files to directories within victims' DLL search paths. |
| The express-xss-sanitizer (aka Express XSS Sanitizer) package through 2.0.0 for Node.js has an unbounded recursion depth in sanitize in lib/sanitize.js for a JSON request body. |