| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| A denial of service vulnerability was found in tipc_crypto_key_revoke in net/tipc/crypto.c in the Linux kernel’s TIPC subsystem. This flaw allows guests with local user privileges to trigger a deadlock and potentially crash the system. |
| A denial of service vulnerability due to a deadlock was found in sctp_auto_asconf_init in net/sctp/socket.c in the Linux kernel’s SCTP subsystem. This flaw allows guests with local user privileges to trigger a deadlock and potentially crash the system. |
| A flaw was found in Keylime. Due to their blocking nature, the Keylime registrar is subject to a remote denial of service against its SSL connections. This flaw allows an attacker to exhaust all available connections. |
| An infinite loop vulnerability was found in Samba's mdssvc RPC service for Spotlight. When parsing Spotlight mdssvc RPC packets sent by the client, the core unmarshalling function sl_unpack_loop() did not validate a field in the network packet that contains the count of elements in an array-like structure. By passing 0 as the count value, the attacked function will run in an endless loop consuming 100% CPU. This flaw allows an attacker to issue a malformed RPC request, triggering an infinite loop, resulting in a denial of service condition. |
| An issue has been discovered in GitLab CE/EE affecting all versions starting from 16.2 before 16.3.6, all versions starting from 16.4 before 16.4.2, all versions starting from 16.5 before 16.5.1. A low-privileged attacker can point a CI/CD Component to an incorrect path and cause the server to exhaust all available memory through an infinite loop and cause Denial of Service. |
| In the Linux kernel, the following vulnerability has been resolved:
net: phy: Don't register LEDs for genphy
If a PHY has no driver, the genphy driver is probed/removed directly in
phy_attach/detach. If the PHY's ofnode has an "leds" subnode, then the
LEDs will be (un)registered when probing/removing the genphy driver.
This could occur if the leds are for a non-generic driver that isn't
loaded for whatever reason. Synchronously removing the PHY device in
phy_detach leads to the following deadlock:
rtnl_lock()
ndo_close()
...
phy_detach()
phy_remove()
phy_leds_unregister()
led_classdev_unregister()
led_trigger_set()
netdev_trigger_deactivate()
unregister_netdevice_notifier()
rtnl_lock()
There is a corresponding deadlock on the open/register side of things
(and that one is reported by lockdep), but it requires a race while this
one is deterministic.
Generic PHYs do not support LEDs anyway, so don't bother registering
them. |
| Memory corruptions can be remotely triggered in the Control-M/Agent when SSL/TLS communication is configured.
The issue occurs in the following cases:
* Control-M/Agent 9.0.20: SSL/TLS configuration is set to the non-default setting "use_openssl=n";
* Control-M/Agent 9.0.21 and 9.0.22: Agent router configuration uses the non-default settings "JAVA_AR=N" and "use_openssl=n" |
| In the Linux kernel, the following vulnerability has been resolved:
accel/ivpu: Fix deadlock in ivpu_ms_cleanup()
Fix deadlock in ivpu_ms_cleanup() by preventing runtime resume after
file_priv->ms_lock is acquired.
During a failure in runtime resume, a cold boot is executed, which
calls ivpu_ms_cleanup_all(). This function calls ivpu_ms_cleanup()
that acquires file_priv->ms_lock and causes the deadlock. |
| In the Linux kernel, the following vulnerability has been resolved:
kprobes: don't call disarm_kprobe() for disabled kprobes
The assumption in __disable_kprobe() is wrong, and it could try to disarm
an already disarmed kprobe and fire the WARN_ONCE() below. [0] We can
easily reproduce this issue.
1. Write 0 to /sys/kernel/debug/kprobes/enabled.
# echo 0 > /sys/kernel/debug/kprobes/enabled
2. Run execsnoop. At this time, one kprobe is disabled.
# /usr/share/bcc/tools/execsnoop &
[1] 2460
PCOMM PID PPID RET ARGS
# cat /sys/kernel/debug/kprobes/list
ffffffff91345650 r __x64_sys_execve+0x0 [FTRACE]
ffffffff91345650 k __x64_sys_execve+0x0 [DISABLED][FTRACE]
3. Write 1 to /sys/kernel/debug/kprobes/enabled, which changes
kprobes_all_disarmed to false but does not arm the disabled kprobe.
# echo 1 > /sys/kernel/debug/kprobes/enabled
# cat /sys/kernel/debug/kprobes/list
ffffffff91345650 r __x64_sys_execve+0x0 [FTRACE]
ffffffff91345650 k __x64_sys_execve+0x0 [DISABLED][FTRACE]
4. Kill execsnoop, when __disable_kprobe() calls disarm_kprobe() for the
disabled kprobe and hits the WARN_ONCE() in __disarm_kprobe_ftrace().
# fg
/usr/share/bcc/tools/execsnoop
^C
Actually, WARN_ONCE() is fired twice, and __unregister_kprobe_top() misses
some cleanups and leaves the aggregated kprobe in the hash table. Then,
__unregister_trace_kprobe() initialises tk->rp.kp.list and creates an
infinite loop like this.
aggregated kprobe.list -> kprobe.list -.
^ |
'.__.'
In this situation, these commands fall into the infinite loop and result
in RCU stall or soft lockup.
cat /sys/kernel/debug/kprobes/list : show_kprobe_addr() enters into the
infinite loop with RCU.
/usr/share/bcc/tools/execsnoop : warn_kprobe_rereg() holds kprobe_mutex,
and __get_valid_kprobe() is stuck in
the loop.
To avoid the issue, make sure we don't call disarm_kprobe() for disabled
kprobes.
[0]
Failed to disarm kprobe-ftrace at __x64_sys_execve+0x0/0x40 (error -2)
WARNING: CPU: 6 PID: 2460 at kernel/kprobes.c:1130 __disarm_kprobe_ftrace.isra.19 (kernel/kprobes.c:1129)
Modules linked in: ena
CPU: 6 PID: 2460 Comm: execsnoop Not tainted 5.19.0+ #28
Hardware name: Amazon EC2 c5.2xlarge/, BIOS 1.0 10/16/2017
RIP: 0010:__disarm_kprobe_ftrace.isra.19 (kernel/kprobes.c:1129)
Code: 24 8b 02 eb c1 80 3d c4 83 f2 01 00 75 d4 48 8b 75 00 89 c2 48 c7 c7 90 fa 0f 92 89 04 24 c6 05 ab 83 01 e8 e4 94 f0 ff <0f> 0b 8b 04 24 eb b1 89 c6 48 c7 c7 60 fa 0f 92 89 04 24 e8 cc 94
RSP: 0018:ffff9e6ec154bd98 EFLAGS: 00010282
RAX: 0000000000000000 RBX: ffffffff930f7b00 RCX: 0000000000000001
RDX: 0000000080000001 RSI: ffffffff921461c5 RDI: 00000000ffffffff
RBP: ffff89c504286da8 R08: 0000000000000000 R09: c0000000fffeffff
R10: 0000000000000000 R11: ffff9e6ec154bc28 R12: ffff89c502394e40
R13: ffff89c502394c00 R14: ffff9e6ec154bc00 R15: 0000000000000000
FS: 00007fe800398740(0000) GS:ffff89c812d80000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 000000c00057f010 CR3: 0000000103b54006 CR4: 00000000007706e0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
PKRU: 55555554
Call Trace:
<TASK>
__disable_kprobe (kernel/kprobes.c:1716)
disable_kprobe (kernel/kprobes.c:2392)
__disable_trace_kprobe (kernel/trace/trace_kprobe.c:340)
disable_trace_kprobe (kernel/trace/trace_kprobe.c:429)
perf_trace_event_unreg.isra.2 (./include/linux/tracepoint.h:93 kernel/trace/trace_event_perf.c:168)
perf_kprobe_destroy (kernel/trace/trace_event_perf.c:295)
_free_event (kernel/events/core.c:4971)
perf_event_release_kernel (kernel/events/core.c:5176)
perf_release (kernel/events/core.c:5186)
__fput (fs/file_table.c:321)
task_work_run (./include/linux/
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
page_pool: avoid infinite loop to schedule delayed worker
We noticed the kworker in page_pool_release_retry() was waken
up repeatedly and infinitely in production because of the
buggy driver causing the inflight less than 0 and warning
us in page_pool_inflight()[1].
Since the inflight value goes negative, it means we should
not expect the whole page_pool to get back to work normally.
This patch mitigates the adverse effect by not rescheduling
the kworker when detecting the inflight negative in
page_pool_release_retry().
[1]
[Mon Feb 10 20:36:11 2025] ------------[ cut here ]------------
[Mon Feb 10 20:36:11 2025] Negative(-51446) inflight packet-pages
...
[Mon Feb 10 20:36:11 2025] Call Trace:
[Mon Feb 10 20:36:11 2025] page_pool_release_retry+0x23/0x70
[Mon Feb 10 20:36:11 2025] process_one_work+0x1b1/0x370
[Mon Feb 10 20:36:11 2025] worker_thread+0x37/0x3a0
[Mon Feb 10 20:36:11 2025] kthread+0x11a/0x140
[Mon Feb 10 20:36:11 2025] ? process_one_work+0x370/0x370
[Mon Feb 10 20:36:11 2025] ? __kthread_cancel_work+0x40/0x40
[Mon Feb 10 20:36:11 2025] ret_from_fork+0x35/0x40
[Mon Feb 10 20:36:11 2025] ---[ end trace ebffe800f33e7e34 ]---
Note: before this patch, the above calltrace would flood the
dmesg due to repeated reschedule of release_dw kworker. |
| In the Linux kernel, the following vulnerability has been resolved:
dm crypt: add cond_resched() to dmcrypt_write()
The loop in dmcrypt_write may be running for unbounded amount of time,
thus we need cond_resched() in it.
This commit fixes the following warning:
[ 3391.153255][ C12] watchdog: BUG: soft lockup - CPU#12 stuck for 23s! [dmcrypt_write/2:2897]
...
[ 3391.387210][ C12] Call trace:
[ 3391.390338][ C12] blk_attempt_bio_merge.part.6+0x38/0x158
[ 3391.395970][ C12] blk_attempt_plug_merge+0xc0/0x1b0
[ 3391.401085][ C12] blk_mq_submit_bio+0x398/0x550
[ 3391.405856][ C12] submit_bio_noacct+0x308/0x380
[ 3391.410630][ C12] dmcrypt_write+0x1e4/0x208 [dm_crypt]
[ 3391.416005][ C12] kthread+0x130/0x138
[ 3391.419911][ C12] ret_from_fork+0x10/0x18 |
| A security issue was discovered in the LRA Coordinator component of Narayana. When Cancel is called in LRA, an execution time of approximately 2 seconds occurs. If Join is called with the same LRA ID within that timeframe, the application may crash or hang indefinitely, leading to a denial of service. |
| In the Linux kernel, the following vulnerability has been resolved:
bpf, sockmap: Fix an infinite loop error when len is 0 in tcp_bpf_recvmsg_parser()
When the buffer length of the recvmsg system call is 0, we got the
flollowing soft lockup problem:
watchdog: BUG: soft lockup - CPU#3 stuck for 27s! [a.out:6149]
CPU: 3 PID: 6149 Comm: a.out Kdump: loaded Not tainted 6.2.0+ #30
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.15.0-1 04/01/2014
RIP: 0010:remove_wait_queue+0xb/0xc0
Code: 5e 41 5f c3 cc cc cc cc 0f 1f 80 00 00 00 00 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 f3 0f 1e fa 0f 1f 44 00 00 41 57 <41> 56 41 55 41 54 55 48 89 fd 53 48 89 f3 4c 8d 6b 18 4c 8d 73 20
RSP: 0018:ffff88811b5978b8 EFLAGS: 00000246
RAX: 0000000000000000 RBX: ffff88811a7d3780 RCX: ffffffffb7a4d768
RDX: dffffc0000000000 RSI: ffff88811b597908 RDI: ffff888115408040
RBP: 1ffff110236b2f1b R08: 0000000000000000 R09: ffff88811a7d37e7
R10: ffffed10234fa6fc R11: 0000000000000001 R12: ffff88811179b800
R13: 0000000000000001 R14: ffff88811a7d38a8 R15: ffff88811a7d37e0
FS: 00007f6fb5398740(0000) GS:ffff888237180000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000020000000 CR3: 000000010b6ba002 CR4: 0000000000370ee0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
tcp_msg_wait_data+0x279/0x2f0
tcp_bpf_recvmsg_parser+0x3c6/0x490
inet_recvmsg+0x280/0x290
sock_recvmsg+0xfc/0x120
____sys_recvmsg+0x160/0x3d0
___sys_recvmsg+0xf0/0x180
__sys_recvmsg+0xea/0x1a0
do_syscall_64+0x3f/0x90
entry_SYSCALL_64_after_hwframe+0x72/0xdc
The logic in tcp_bpf_recvmsg_parser is as follows:
msg_bytes_ready:
copied = sk_msg_recvmsg(sk, psock, msg, len, flags);
if (!copied) {
wait data;
goto msg_bytes_ready;
}
In this case, "copied" always is 0, the infinite loop occurs.
According to the Linux system call man page, 0 should be returned in this
case. Therefore, in tcp_bpf_recvmsg_parser(), if the length is 0, directly
return. Also modify several other functions with the same problem. |
| ELOG allows an authenticated user to upload arbitrary HTML files. The HTML content is executed in the context of other users when they open the file. Because ELOG includes usernames and password hashes in certain HTTP requests, an attacker can obtain the target's credentials and replay them or crack the password hash offline. In ELOG 3.1.5-20251014 release, HTML files are rendered as plain text. |
| A flaw was found in the QEMU built-in VNC server while processing ClientCutText messages. A wrong exit condition may lead to an infinite loop when inflating an attacker controlled zlib buffer in the `inflate_buffer` function. This could allow a remote authenticated client who is able to send a clipboard to the VNC server to trigger a denial of service. |
| A vulnerability was found in libX11 due to an infinite loop within the PutSubImage() function. This flaw allows a local user to consume all available system resources and cause a denial of service condition. |
| An issue was discovered in libarchive bsdtar before version 3.8.1 in function apply_substitution in file tar/subst.c when processing crafted -s substitution rules. This can cause unbounded memory allocation and lead to denial of service (Out-of-Memory crash). |
| There is a defect in the CPython “tarfile” module affecting the “TarFile” extraction and entry enumeration APIs. The tar implementation would process tar archives with negative offsets without error, resulting in an infinite loop and deadlock during the parsing of maliciously crafted tar archives.
This vulnerability can be mitigated by including the following patch after importing the “tarfile” module: https://gist.github.com/sethmlarson/1716ac5b82b73dbcbf23ad2eff8b33e1 |
| In some circumstances, when DNSdist is configured to use the nghttp2 library to process incoming DNS over HTTPS queries, an attacker might be able to cause a denial of service by crafting a DoH exchange that triggers an unbounded I/O read loop, causing an unexpected consumption of CPU resources. |
| In the Linux kernel, the following vulnerability has been resolved:
x86/fpu: Stop relying on userspace for info to fault in xsave buffer
Before this change, the expected size of the user space buffer was
taken from fx_sw->xstate_size. fx_sw->xstate_size can be changed
from user-space, so it is possible construct a sigreturn frame where:
* fx_sw->xstate_size is smaller than the size required by valid bits in
fx_sw->xfeatures.
* user-space unmaps parts of the sigrame fpu buffer so that not all of
the buffer required by xrstor is accessible.
In this case, xrstor tries to restore and accesses the unmapped area
which results in a fault. But fault_in_readable succeeds because buf +
fx_sw->xstate_size is within the still mapped area, so it goes back and
tries xrstor again. It will spin in this loop forever.
Instead, fault in the maximum size which can be touched by XRSTOR (taken
from fpstate->user_size).
[ dhansen: tweak subject / changelog ] |