CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
A vulnerability has been found in Coinomi up to 1.7.6. This issue affects some unknown processing. Such manipulation leads to cleartext transmission of sensitive information. The attack can be launched remotely. This attack is characterized by high complexity. The exploitability is assessed as difficult. The exploit has been disclosed to the public and may be used. The vendor replied with: "(...) there isn't any security implication associated with your findings." |
In the Linux kernel, the following vulnerability has been resolved:
net: tun: fix tun_napi_alloc_frags()
syzbot reported the following crash [1]
Issue came with the blamed commit. Instead of going through
all the iov components, we keep using the first one
and end up with a malformed skb.
[1]
kernel BUG at net/core/skbuff.c:2849 !
Oops: invalid opcode: 0000 [#1] PREEMPT SMP KASAN PTI
CPU: 0 UID: 0 PID: 6230 Comm: syz-executor132 Not tainted 6.13.0-rc1-syzkaller-00407-g96b6fcc0ee41 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 11/25/2024
RIP: 0010:__pskb_pull_tail+0x1568/0x1570 net/core/skbuff.c:2848
Code: 38 c1 0f 8c 32 f1 ff ff 4c 89 f7 e8 92 96 74 f8 e9 25 f1 ff ff e8 e8 ae 09 f8 48 8b 5c 24 08 e9 eb fb ff ff e8 d9 ae 09 f8 90 <0f> 0b 66 0f 1f 44 00 00 90 90 90 90 90 90 90 90 90 90 90 90 90 90
RSP: 0018:ffffc90004cbef30 EFLAGS: 00010293
RAX: ffffffff8995c347 RBX: 00000000fffffff2 RCX: ffff88802cf45a00
RDX: 0000000000000000 RSI: 00000000fffffff2 RDI: 0000000000000000
RBP: ffff88807df0c06a R08: ffffffff8995b084 R09: 1ffff1100fbe185c
R10: dffffc0000000000 R11: ffffed100fbe185d R12: ffff888076e85d50
R13: ffff888076e85c80 R14: ffff888076e85cf4 R15: ffff888076e85c80
FS: 00007f0dca6ea6c0(0000) GS:ffff8880b8600000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f0dca6ead58 CR3: 00000000119da000 CR4: 00000000003526f0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
skb_cow_data+0x2da/0xcb0 net/core/skbuff.c:5284
tipc_aead_decrypt net/tipc/crypto.c:894 [inline]
tipc_crypto_rcv+0x402/0x24e0 net/tipc/crypto.c:1844
tipc_rcv+0x57e/0x12a0 net/tipc/node.c:2109
tipc_l2_rcv_msg+0x2bd/0x450 net/tipc/bearer.c:668
__netif_receive_skb_list_ptype net/core/dev.c:5720 [inline]
__netif_receive_skb_list_core+0x8b7/0x980 net/core/dev.c:5762
__netif_receive_skb_list net/core/dev.c:5814 [inline]
netif_receive_skb_list_internal+0xa51/0xe30 net/core/dev.c:5905
gro_normal_list include/net/gro.h:515 [inline]
napi_complete_done+0x2b5/0x870 net/core/dev.c:6256
napi_complete include/linux/netdevice.h:567 [inline]
tun_get_user+0x2ea0/0x4890 drivers/net/tun.c:1982
tun_chr_write_iter+0x10d/0x1f0 drivers/net/tun.c:2057
do_iter_readv_writev+0x600/0x880
vfs_writev+0x376/0xba0 fs/read_write.c:1050
do_writev+0x1b6/0x360 fs/read_write.c:1096
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xf3/0x230 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x77/0x7f |
In the Linux kernel, the following vulnerability has been resolved:
ring-buffer: Fix overflow in __rb_map_vma
An overflow occurred when performing the following calculation:
nr_pages = ((nr_subbufs + 1) << subbuf_order) - pgoff;
Add a check before the calculation to avoid this problem.
syzbot reported this as a slab-out-of-bounds in __rb_map_vma:
BUG: KASAN: slab-out-of-bounds in __rb_map_vma+0x9ab/0xae0 kernel/trace/ring_buffer.c:7058
Read of size 8 at addr ffff8880767dd2b8 by task syz-executor187/5836
CPU: 0 UID: 0 PID: 5836 Comm: syz-executor187 Not tainted 6.13.0-rc2-syzkaller-00159-gf932fb9b4074 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 11/25/2024
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:94 [inline]
dump_stack_lvl+0x116/0x1f0 lib/dump_stack.c:120
print_address_description mm/kasan/report.c:378 [inline]
print_report+0xc3/0x620 mm/kasan/report.c:489
kasan_report+0xd9/0x110 mm/kasan/report.c:602
__rb_map_vma+0x9ab/0xae0 kernel/trace/ring_buffer.c:7058
ring_buffer_map+0x56e/0x9b0 kernel/trace/ring_buffer.c:7138
tracing_buffers_mmap+0xa6/0x120 kernel/trace/trace.c:8482
call_mmap include/linux/fs.h:2183 [inline]
mmap_file mm/internal.h:124 [inline]
__mmap_new_file_vma mm/vma.c:2291 [inline]
__mmap_new_vma mm/vma.c:2355 [inline]
__mmap_region+0x1786/0x2670 mm/vma.c:2456
mmap_region+0x127/0x320 mm/mmap.c:1348
do_mmap+0xc00/0xfc0 mm/mmap.c:496
vm_mmap_pgoff+0x1ba/0x360 mm/util.c:580
ksys_mmap_pgoff+0x32c/0x5c0 mm/mmap.c:542
__do_sys_mmap arch/x86/kernel/sys_x86_64.c:89 [inline]
__se_sys_mmap arch/x86/kernel/sys_x86_64.c:82 [inline]
__x64_sys_mmap+0x125/0x190 arch/x86/kernel/sys_x86_64.c:82
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xcd/0x250 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x77/0x7f
The reproducer for this bug is:
------------------------8<-------------------------
#include <fcntl.h>
#include <stdlib.h>
#include <unistd.h>
#include <asm/types.h>
#include <sys/mman.h>
int main(int argc, char **argv)
{
int page_size = getpagesize();
int fd;
void *meta;
system("echo 1 > /sys/kernel/tracing/buffer_size_kb");
fd = open("/sys/kernel/tracing/per_cpu/cpu0/trace_pipe_raw", O_RDONLY);
meta = mmap(NULL, page_size, PROT_READ, MAP_SHARED, fd, page_size * 5);
}
------------------------>8------------------------- |
In the Linux kernel, the following vulnerability has been resolved:
wifi: iwlwifi: mvm: rfi: fix potential response leaks
If the rx payload length check fails, or if kmemdup() fails,
we still need to free the command response. Fix that. |
A SQL injection issue has been discovered in eTRAKiT.net release 3.2.1.77. Due to improper input validation, a remote unauthenticated attacker can run arbitrary commands as the current MS SQL server account. It is recommended that the CRM feature is turned off while on eTRAKiT.net release 3.2.1.77. eTRAKiT.Net is no longer supported, and users are recommended to migrate to the latest version of CentralSquare Community Development. |
In the Linux kernel, the following vulnerability has been resolved:
ipvs: fix UB due to uninitialized stack access in ip_vs_protocol_init()
Under certain kernel configurations when building with Clang/LLVM, the
compiler does not generate a return or jump as the terminator
instruction for ip_vs_protocol_init(), triggering the following objtool
warning during build time:
vmlinux.o: warning: objtool: ip_vs_protocol_init() falls through to next function __initstub__kmod_ip_vs_rr__935_123_ip_vs_rr_init6()
At runtime, this either causes an oops when trying to load the ipvs
module or a boot-time panic if ipvs is built-in. This same issue has
been reported by the Intel kernel test robot previously.
Digging deeper into both LLVM and the kernel code reveals this to be a
undefined behavior problem. ip_vs_protocol_init() uses a on-stack buffer
of 64 chars to store the registered protocol names and leaves it
uninitialized after definition. The function calls strnlen() when
concatenating protocol names into the buffer. With CONFIG_FORTIFY_SOURCE
strnlen() performs an extra step to check whether the last byte of the
input char buffer is a null character (commit 3009f891bb9f ("fortify:
Allow strlen() and strnlen() to pass compile-time known lengths")).
This, together with possibly other configurations, cause the following
IR to be generated:
define hidden i32 @ip_vs_protocol_init() local_unnamed_addr #5 section ".init.text" align 16 !kcfi_type !29 {
%1 = alloca [64 x i8], align 16
...
14: ; preds = %11
%15 = getelementptr inbounds i8, ptr %1, i64 63
%16 = load i8, ptr %15, align 1
%17 = tail call i1 @llvm.is.constant.i8(i8 %16)
%18 = icmp eq i8 %16, 0
%19 = select i1 %17, i1 %18, i1 false
br i1 %19, label %20, label %23
20: ; preds = %14
%21 = call i64 @strlen(ptr noundef nonnull dereferenceable(1) %1) #23
...
23: ; preds = %14, %11, %20
%24 = call i64 @strnlen(ptr noundef nonnull dereferenceable(1) %1, i64 noundef 64) #24
...
}
The above code calculates the address of the last char in the buffer
(value %15) and then loads from it (value %16). Because the buffer is
never initialized, the LLVM GVN pass marks value %16 as undefined:
%13 = getelementptr inbounds i8, ptr %1, i64 63
br i1 undef, label %14, label %17
This gives later passes (SCCP, in particular) more DCE opportunities by
propagating the undef value further, and eventually removes everything
after the load on the uninitialized stack location:
define hidden i32 @ip_vs_protocol_init() local_unnamed_addr #0 section ".init.text" align 16 !kcfi_type !11 {
%1 = alloca [64 x i8], align 16
...
12: ; preds = %11
%13 = getelementptr inbounds i8, ptr %1, i64 63
unreachable
}
In this way, the generated native code will just fall through to the
next function, as LLVM does not generate any code for the unreachable IR
instruction and leaves the function without a terminator.
Zero the on-stack buffer to avoid this possible UB. |
In the Linux kernel, the following vulnerability has been resolved:
ice: fix memory corruption bug with suspend and rebuild
The ice driver would previously panic after suspend. This is caused
from the driver *only* calling the ice_vsi_free_q_vectors() function by
itself, when it is suspending. Since commit b3e7b3a6ee92 ("ice: prevent
NULL pointer deref during reload") the driver has zeroed out
num_q_vectors, and only restored it in ice_vsi_cfg_def().
This further causes the ice_rebuild() function to allocate a zero length
buffer, after which num_q_vectors is updated, and then the new value of
num_q_vectors is used to index into the zero length buffer, which
corrupts memory.
The fix entails making sure all the code referencing num_q_vectors only
does so after it has been reset via ice_vsi_cfg_def().
I didn't perform a full bisect, but I was able to test against 6.1.77
kernel and that ice driver works fine for suspend/resume with no panic,
so sometime since then, this problem was introduced.
Also clean up an un-needed init of a local variable in the function
being modified.
PANIC from 6.8.0-rc1:
[1026674.915596] PM: suspend exit
[1026675.664697] ice 0000:17:00.1: PTP reset successful
[1026675.664707] ice 0000:17:00.1: 2755 msecs passed between update to cached PHC time
[1026675.667660] ice 0000:b1:00.0: PTP reset successful
[1026675.675944] ice 0000:b1:00.0: 2832 msecs passed between update to cached PHC time
[1026677.137733] ixgbe 0000:31:00.0 ens787: NIC Link is Up 1 Gbps, Flow Control: None
[1026677.190201] BUG: kernel NULL pointer dereference, address: 0000000000000010
[1026677.192753] ice 0000:17:00.0: PTP reset successful
[1026677.192764] ice 0000:17:00.0: 4548 msecs passed between update to cached PHC time
[1026677.197928] #PF: supervisor read access in kernel mode
[1026677.197933] #PF: error_code(0x0000) - not-present page
[1026677.197937] PGD 1557a7067 P4D 0
[1026677.212133] ice 0000:b1:00.1: PTP reset successful
[1026677.212143] ice 0000:b1:00.1: 4344 msecs passed between update to cached PHC time
[1026677.212575]
[1026677.243142] Oops: 0000 [#1] PREEMPT SMP NOPTI
[1026677.247918] CPU: 23 PID: 42790 Comm: kworker/23:0 Kdump: loaded Tainted: G W 6.8.0-rc1+ #1
[1026677.257989] Hardware name: Intel Corporation M50CYP2SBSTD/M50CYP2SBSTD, BIOS SE5C620.86B.01.01.0005.2202160810 02/16/2022
[1026677.269367] Workqueue: ice ice_service_task [ice]
[1026677.274592] RIP: 0010:ice_vsi_rebuild_set_coalesce+0x130/0x1e0 [ice]
[1026677.281421] Code: 0f 84 3a ff ff ff 41 0f b7 74 ec 02 66 89 b0 22 02 00 00 81 e6 ff 1f 00 00 e8 ec fd ff ff e9 35 ff ff ff 48 8b 43 30 49 63 ed <41> 0f b7 34 24 41 83 c5 01 48 8b 3c e8 66 89 b7 aa 02 00 00 81 e6
[1026677.300877] RSP: 0018:ff3be62a6399bcc0 EFLAGS: 00010202
[1026677.306556] RAX: ff28691e28980828 RBX: ff28691e41099828 RCX: 0000000000188000
[1026677.314148] RDX: 0000000000000000 RSI: 0000000000000010 RDI: ff28691e41099828
[1026677.321730] RBP: 0000000000000000 R08: 0000000000000000 R09: 0000000000000000
[1026677.329311] R10: 0000000000000007 R11: ffffffffffffffc0 R12: 0000000000000010
[1026677.336896] R13: 0000000000000000 R14: 0000000000000000 R15: ff28691e0eaa81a0
[1026677.344472] FS: 0000000000000000(0000) GS:ff28693cbffc0000(0000) knlGS:0000000000000000
[1026677.353000] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[1026677.359195] CR2: 0000000000000010 CR3: 0000000128df4001 CR4: 0000000000771ef0
[1026677.366779] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[1026677.374369] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[1026677.381952] PKRU: 55555554
[1026677.385116] Call Trace:
[1026677.388023] <TASK>
[1026677.390589] ? __die+0x20/0x70
[1026677.394105] ? page_fault_oops+0x82/0x160
[1026677.398576] ? do_user_addr_fault+0x65/0x6a0
[1026677.403307] ? exc_page_fault+0x6a/0x150
[1026677.407694] ? asm_exc_page_fault+0x22/0x30
[1026677.412349] ? ice_vsi_rebuild_set_coalesce+0x130/0x1e0 [ice]
[1026677.4186
---truncated--- |
In the Linux kernel, the following vulnerability has been resolved:
igb: Fix potential invalid memory access in igb_init_module()
The pci_register_driver() can fail and when this happened, the dca_notifier
needs to be unregistered, otherwise the dca_notifier can be called when
igb fails to install, resulting to invalid memory access. |
In the Linux kernel, the following vulnerability has been resolved:
mm: use aligned address in clear_gigantic_page()
In current kernel, hugetlb_no_page() calls folio_zero_user() with the
fault address. Where the fault address may be not aligned with the huge
page size. Then, folio_zero_user() may call clear_gigantic_page() with
the address, while clear_gigantic_page() requires the address to be huge
page size aligned. So, this may cause memory corruption or information
leak, addtional, use more obvious naming 'addr_hint' instead of 'addr' for
clear_gigantic_page(). |
Vite, a provider of frontend development tooling, has a vulnerability in versions prior to 6.2.3, 6.1.2, 6.0.12, 5.4.15, and 4.5.10. `@fs` denies access to files outside of Vite serving allow list. Adding `?raw??` or `?import&raw??` to the URL bypasses this limitation and returns the file content if it exists. This bypass exists because trailing separators such as `?` are removed in several places, but are not accounted for in query string regexes. The contents of arbitrary files can be returned to the browser. Only apps explicitly exposing the Vite dev server to the network (using `--host` or `server.host` config option) are affected. Versions 6.2.3, 6.1.2, 6.0.12, 5.4.15, and 4.5.10 fix the issue. |
In certain cases, SNI could have been sent unencrypted even when encrypted DNS was enabled. This vulnerability affects Firefox < 139 and Thunderbird < 139. |
StorageGRID (formerly StorageGRID Webscale) versions prior to 11.9 are susceptible to a Denial of Service (DoS) vulnerability. Successful exploit by an authenticated attacker could lead to a service crash. |
StorageGRID (formerly
StorageGRID Webscale) versions prior to 11.8.0.15 and 11.9.0.8 are
susceptible to a Reflected Cross-Site Scripting vulnerability.
Successful exploit could allow an attacker to view or modify
configuration settings or add or modify user accounts but requires the
attacker to know specific information about the target instance and then
trick a privileged user into clicking a specially crafted link. |
StorageGRID (formerly
StorageGRID Webscale) versions prior to 11.8.0.15 and 11.9.0.8 without
Single Sign-on enabled are susceptible to a Server-Side Request Forgery
(SSRF) vulnerability. Successful exploit could allow an unauthenticated
attacker to change the password of any Grid Manager or Tenant Manager
non-federated user. |
StorageGRID (formerly
StorageGRID Webscale) versions prior to 11.8.0.15 and 11.9.0.8 are
susceptible to a Denial of Service vulnerability. Successful exploit
could allow an unauthenticated attacker to cause a Denial of Service on
the Admin node. |
Xorcom CompletePBX is vulnerable to an authenticated path traversal, allowing for arbitrary file reads via the Backup and Restore functionality.This issue affects CompletePBX: through 5.2.35. |
StorageGRID (formerly
StorageGRID Webscale) versions prior to 11.8.0.15 and 11.9.0.8 are
susceptible to a privilege escalation vulnerability. Successful exploit
could allow an unauthorized authenticated attacker to discover Grid node
names and IP addresses or modify Storage Grades. |
Xorcom CompletePBX is vulnerable to command injection in the administrator Task Scheduler functionality, allowing for attackers to execute arbitrary commands as the root user.
This issue affects CompletePBX: all versions up to and prior to 5.2.35 |
A command injection vulnerability has been reported to affect several QNAP operating system versions. If exploited, the vulnerability could allow remote attackers who have gained user access to execute arbitrary commands.
We have already fixed the vulnerability in the following versions:
QTS 5.2.4.3079 build 20250321 and later
QuTS hero h5.2.4.3079 build 20250321 and later |
A buffer overflow vulnerability has been reported to affect several QNAP operating system versions. If exploited, the vulnerability could allow remote attackers who have gained user access to modify memory or crash processes.
We have already fixed the vulnerability in the following versions:
QTS 5.2.4.3079 build 20250321 and later
QuTS hero h5.2.4.3079 build 20250321 and later |