CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
In the Linux kernel, the following vulnerability has been resolved:
drm/amdgpu: fix use-after-free in amdgpu_userq_suspend+0x51a/0x5a0
[ +0.000020] BUG: KASAN: slab-use-after-free in amdgpu_userq_suspend+0x51a/0x5a0 [amdgpu]
[ +0.000817] Read of size 8 at addr ffff88812eec8c58 by task amd_pci_unplug/1733
[ +0.000027] CPU: 10 UID: 0 PID: 1733 Comm: amd_pci_unplug Tainted: G W 6.14.0+ #2
[ +0.000009] Tainted: [W]=WARN
[ +0.000003] Hardware name: ASUS System Product Name/ROG STRIX B550-F GAMING (WI-FI), BIOS 1401 12/03/2020
[ +0.000004] Call Trace:
[ +0.000004] <TASK>
[ +0.000003] dump_stack_lvl+0x76/0xa0
[ +0.000011] print_report+0xce/0x600
[ +0.000009] ? srso_return_thunk+0x5/0x5f
[ +0.000006] ? kasan_complete_mode_report_info+0x76/0x200
[ +0.000007] ? kasan_addr_to_slab+0xd/0xb0
[ +0.000006] ? amdgpu_userq_suspend+0x51a/0x5a0 [amdgpu]
[ +0.000707] kasan_report+0xbe/0x110
[ +0.000006] ? amdgpu_userq_suspend+0x51a/0x5a0 [amdgpu]
[ +0.000541] __asan_report_load8_noabort+0x14/0x30
[ +0.000005] amdgpu_userq_suspend+0x51a/0x5a0 [amdgpu]
[ +0.000535] ? stop_cpsch+0x396/0x600 [amdgpu]
[ +0.000556] ? stop_cpsch+0x429/0x600 [amdgpu]
[ +0.000536] ? __pfx_amdgpu_userq_suspend+0x10/0x10 [amdgpu]
[ +0.000536] ? srso_return_thunk+0x5/0x5f
[ +0.000004] ? kgd2kfd_suspend+0x132/0x1d0 [amdgpu]
[ +0.000542] amdgpu_device_fini_hw+0x581/0xe90 [amdgpu]
[ +0.000485] ? down_write+0xbb/0x140
[ +0.000007] ? __mutex_unlock_slowpath.constprop.0+0x317/0x360
[ +0.000005] ? __pfx_amdgpu_device_fini_hw+0x10/0x10 [amdgpu]
[ +0.000482] ? __kasan_check_write+0x14/0x30
[ +0.000004] ? srso_return_thunk+0x5/0x5f
[ +0.000004] ? up_write+0x55/0xb0
[ +0.000007] ? srso_return_thunk+0x5/0x5f
[ +0.000005] ? blocking_notifier_chain_unregister+0x6c/0xc0
[ +0.000008] amdgpu_driver_unload_kms+0x69/0x90 [amdgpu]
[ +0.000484] amdgpu_pci_remove+0x93/0x130 [amdgpu]
[ +0.000482] pci_device_remove+0xae/0x1e0
[ +0.000008] device_remove+0xc7/0x180
[ +0.000008] device_release_driver_internal+0x3d4/0x5a0
[ +0.000007] device_release_driver+0x12/0x20
[ +0.000004] pci_stop_bus_device+0x104/0x150
[ +0.000006] pci_stop_and_remove_bus_device_locked+0x1b/0x40
[ +0.000005] remove_store+0xd7/0xf0
[ +0.000005] ? __pfx_remove_store+0x10/0x10
[ +0.000006] ? __pfx__copy_from_iter+0x10/0x10
[ +0.000006] ? __pfx_dev_attr_store+0x10/0x10
[ +0.000006] dev_attr_store+0x3f/0x80
[ +0.000006] sysfs_kf_write+0x125/0x1d0
[ +0.000004] ? srso_return_thunk+0x5/0x5f
[ +0.000005] ? __kasan_check_write+0x14/0x30
[ +0.000005] kernfs_fop_write_iter+0x2ea/0x490
[ +0.000005] ? rw_verify_area+0x70/0x420
[ +0.000005] ? __pfx_kernfs_fop_write_iter+0x10/0x10
[ +0.000006] vfs_write+0x90d/0xe70
[ +0.000005] ? srso_return_thunk+0x5/0x5f
[ +0.000005] ? __pfx_vfs_write+0x10/0x10
[ +0.000004] ? local_clock+0x15/0x30
[ +0.000008] ? srso_return_thunk+0x5/0x5f
[ +0.000004] ? __kasan_slab_free+0x5f/0x80
[ +0.000005] ? srso_return_thunk+0x5/0x5f
[ +0.000004] ? __kasan_check_read+0x11/0x20
[ +0.000004] ? srso_return_thunk+0x5/0x5f
[ +0.000004] ? fdget_pos+0x1d3/0x500
[ +0.000007] ksys_write+0x119/0x220
[ +0.000005] ? putname+0x1c/0x30
[ +0.000006] ? __pfx_ksys_write+0x10/0x10
[ +0.000007] __x64_sys_write+0x72/0xc0
[ +0.000006] x64_sys_call+0x18ab/0x26f0
[ +0.000006] do_syscall_64+0x7c/0x170
[ +0.000004] ? srso_return_thunk+0x5/0x5f
[ +0.000004] ? __pfx___x64_sys_openat+0x10/0x10
[ +0.000006] ? srso_return_thunk+0x5/0x5f
[ +0.000004] ? __kasan_check_read+0x11/0x20
[ +0.000003] ? srso_return_thunk+0x5/0x5f
[ +0.000004] ? fpregs_assert_state_consistent+0x21/0xb0
[ +0.000006] ? srso_return_thunk+0x5/0x5f
[ +0.000004] ? syscall_exit_to_user_mode+0x4e/0x240
[ +0.000005] ? srso_return_thunk+0x5/0x5f
[ +0.000004] ? do_syscall_64+0x88/0x170
[ +0.000003] ? srso_return_thunk+0x5/0x5f
[ +0.000004] ? irqentry_exit+0x43/0x50
[ +0.000004] ? srso_return_thunk+0x5
---truncated--- |
In the Linux kernel, the following vulnerability has been resolved:
drm/rockchip: vop2: fail cleanly if missing a primary plane for a video-port
Each window of a vop2 is usable by a specific set of video ports, so while
binding the vop2, we look through the list of available windows trying to
find one designated as primary-plane and usable by that specific port.
The code later wants to use drm_crtc_init_with_planes with that found
primary plane, but nothing has checked so far if a primary plane was
actually found.
For whatever reason, the rk3576 vp2 does not have a usable primary window
(if vp0 is also in use) which brought the issue to light and ended in a
null-pointer dereference further down.
As we expect a primary-plane to exist for a video-port, add a check at
the end of the window-iteration and fail probing if none was found. |
In the Linux kernel, the following vulnerability has been resolved:
drm/panthor: Fix UAF in panthor_gem_create_with_handle() debugfs code
The object is potentially already gone after the drm_gem_object_put().
In general the object should be fully constructed before calling
drm_gem_handle_create(), except the debugfs tracking uses a separate
lock and list and separate flag to denotate whether the object is
actually initialized.
Since I'm touching this all anyway simplify this by only adding the
object to the debugfs when it's ready for that, which allows us to
delete that separate flag. panthor_gem_debugfs_bo_rm() already checks
whether we've actually been added to the list or this is some error
path cleanup.
v2: Fix build issues for !CONFIG_DEBUGFS (Adrián)
v3: Add linebreak and remove outdated comment (Liviu) |
In the Linux kernel, the following vulnerability has been resolved:
xen: fix UAF in dmabuf_exp_from_pages()
[dma_buf_fd() fixes; no preferences regarding the tree it goes through -
up to xen folks]
As soon as we'd inserted a file reference into descriptor table, another
thread could close it. That's fine for the case when all we are doing is
returning that descriptor to userland (it's a race, but it's a userland
race and there's nothing the kernel can do about it). However, if we
follow fd_install() with any kind of access to objects that would be
destroyed on close (be it the struct file itself or anything destroyed
by its ->release()), we have a UAF.
dma_buf_fd() is a combination of reserving a descriptor and fd_install().
gntdev dmabuf_exp_from_pages() calls it and then proceeds to access the
objects destroyed on close - starting with gntdev_dmabuf itself.
Fix that by doing reserving descriptor before anything else and do
fd_install() only when everything had been set up. |
In the Linux kernel, the following vulnerability has been resolved:
iommu/vt-d: Fix UAF on sva unbind with pending IOPFs
Commit 17fce9d2336d ("iommu/vt-d: Put iopf enablement in domain attach
path") disables IOPF on device by removing the device from its IOMMU's
IOPF queue when the last IOPF-capable domain is detached from the device.
Unfortunately, it did this in a wrong place where there are still pending
IOPFs. As a result, a use-after-free error is potentially triggered and
eventually a kernel panic with a kernel trace similar to the following:
refcount_t: underflow; use-after-free.
WARNING: CPU: 3 PID: 313 at lib/refcount.c:28 refcount_warn_saturate+0xd8/0xe0
Workqueue: iopf_queue/dmar0-iopfq iommu_sva_handle_iopf
Call Trace:
<TASK>
iopf_free_group+0xe/0x20
process_one_work+0x197/0x3d0
worker_thread+0x23a/0x350
? rescuer_thread+0x4a0/0x4a0
kthread+0xf8/0x230
? finish_task_switch.isra.0+0x81/0x260
? kthreads_online_cpu+0x110/0x110
? kthreads_online_cpu+0x110/0x110
ret_from_fork+0x13b/0x170
? kthreads_online_cpu+0x110/0x110
ret_from_fork_asm+0x11/0x20
</TASK>
---[ end trace 0000000000000000 ]---
The intel_pasid_tear_down_entry() function is responsible for blocking
hardware from generating new page faults and flushing all in-flight
ones. Therefore, moving iopf_for_domain_remove() after this function
should resolve this. |
In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: hci_sync: fix double free in 'hci_discovery_filter_clear()'
Function 'hci_discovery_filter_clear()' frees 'uuids' array and then
sets it to NULL. There is a tiny chance of the following race:
'hci_cmd_sync_work()'
'update_passive_scan_sync()'
'hci_update_passive_scan_sync()'
'hci_discovery_filter_clear()'
kfree(uuids);
<-------------------------preempted-------------------------------->
'start_service_discovery()'
'hci_discovery_filter_clear()'
kfree(uuids); // DOUBLE FREE
<-------------------------preempted-------------------------------->
uuids = NULL;
To fix it let's add locking around 'kfree()' call and NULL pointer
assignment. Otherwise the following backtrace fires:
[ ] ------------[ cut here ]------------
[ ] kernel BUG at mm/slub.c:547!
[ ] Internal error: Oops - BUG: 00000000f2000800 [#1] PREEMPT SMP
[ ] CPU: 3 UID: 0 PID: 246 Comm: bluetoothd Tainted: G O 6.12.19-kernel #1
[ ] Tainted: [O]=OOT_MODULE
[ ] pstate: 60400005 (nZCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
[ ] pc : __slab_free+0xf8/0x348
[ ] lr : __slab_free+0x48/0x348
...
[ ] Call trace:
[ ] __slab_free+0xf8/0x348
[ ] kfree+0x164/0x27c
[ ] start_service_discovery+0x1d0/0x2c0
[ ] hci_sock_sendmsg+0x518/0x924
[ ] __sock_sendmsg+0x54/0x60
[ ] sock_write_iter+0x98/0xf8
[ ] do_iter_readv_writev+0xe4/0x1c8
[ ] vfs_writev+0x128/0x2b0
[ ] do_writev+0xfc/0x118
[ ] __arm64_sys_writev+0x20/0x2c
[ ] invoke_syscall+0x68/0xf0
[ ] el0_svc_common.constprop.0+0x40/0xe0
[ ] do_el0_svc+0x1c/0x28
[ ] el0_svc+0x30/0xd0
[ ] el0t_64_sync_handler+0x100/0x12c
[ ] el0t_64_sync+0x194/0x198
[ ] Code: 8b0002e6 eb17031f 54fffbe1 d503201f (d4210000)
[ ] ---[ end trace 0000000000000000 ]--- |
In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: hci_devcd_dump: fix out-of-bounds via dev_coredumpv
Currently both dev_coredumpv and skb_put_data in hci_devcd_dump use
hdev->dump.head. However, dev_coredumpv can free the buffer. From
dev_coredumpm_timeout documentation, which is used by dev_coredumpv:
> Creates a new device coredump for the given device. If a previous one hasn't
> been read yet, the new coredump is discarded. The data lifetime is determined
> by the device coredump framework and when it is no longer needed the @free
> function will be called to free the data.
If the data has not been read by the userspace yet, dev_coredumpv will
discard new buffer, freeing hdev->dump.head. This leads to
vmalloc-out-of-bounds error when skb_put_data tries to access
hdev->dump.head.
A crash report from syzbot illustrates this:
==================================================================
BUG: KASAN: vmalloc-out-of-bounds in skb_put_data
include/linux/skbuff.h:2752 [inline]
BUG: KASAN: vmalloc-out-of-bounds in hci_devcd_dump+0x142/0x240
net/bluetooth/coredump.c:258
Read of size 140 at addr ffffc90004ed5000 by task kworker/u9:2/5844
CPU: 1 UID: 0 PID: 5844 Comm: kworker/u9:2 Not tainted
6.14.0-syzkaller-10892-g4e82c87058f4 #0 PREEMPT(full)
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS
Google 02/12/2025
Workqueue: hci0 hci_devcd_timeout
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:94 [inline]
dump_stack_lvl+0x116/0x1f0 lib/dump_stack.c:120
print_address_description mm/kasan/report.c:408 [inline]
print_report+0xc3/0x670 mm/kasan/report.c:521
kasan_report+0xe0/0x110 mm/kasan/report.c:634
check_region_inline mm/kasan/generic.c:183 [inline]
kasan_check_range+0xef/0x1a0 mm/kasan/generic.c:189
__asan_memcpy+0x23/0x60 mm/kasan/shadow.c:105
skb_put_data include/linux/skbuff.h:2752 [inline]
hci_devcd_dump+0x142/0x240 net/bluetooth/coredump.c:258
hci_devcd_timeout+0xb5/0x2e0 net/bluetooth/coredump.c:413
process_one_work+0x9cc/0x1b70 kernel/workqueue.c:3238
process_scheduled_works kernel/workqueue.c:3319 [inline]
worker_thread+0x6c8/0xf10 kernel/workqueue.c:3400
kthread+0x3c2/0x780 kernel/kthread.c:464
ret_from_fork+0x45/0x80 arch/x86/kernel/process.c:153
ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:245
</TASK>
The buggy address ffffc90004ed5000 belongs to a vmalloc virtual mapping
Memory state around the buggy address:
ffffc90004ed4f00: f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8
ffffc90004ed4f80: f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8
>ffffc90004ed5000: f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8
^
ffffc90004ed5080: f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8
ffffc90004ed5100: f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8
==================================================================
To avoid this issue, reorder dev_coredumpv to be called after
skb_put_data that does not free the data. |
In the Linux kernel, the following vulnerability has been resolved:
bpf: Reject narrower access to pointer ctx fields
The following BPF program, simplified from a syzkaller repro, causes a
kernel warning:
r0 = *(u8 *)(r1 + 169);
exit;
With pointer field sk being at offset 168 in __sk_buff. This access is
detected as a narrower read in bpf_skb_is_valid_access because it
doesn't match offsetof(struct __sk_buff, sk). It is therefore allowed
and later proceeds to bpf_convert_ctx_access. Note that for the
"is_narrower_load" case in the convert_ctx_accesses(), the insn->off
is aligned, so the cnt may not be 0 because it matches the
offsetof(struct __sk_buff, sk) in the bpf_convert_ctx_access. However,
the target_size stays 0 and the verifier errors with a kernel warning:
verifier bug: error during ctx access conversion(1)
This patch fixes that to return a proper "invalid bpf_context access
off=X size=Y" error on the load instruction.
The same issue affects multiple other fields in context structures that
allow narrow access. Some other non-affected fields (for sk_msg,
sk_lookup, and sockopt) were also changed to use bpf_ctx_range_ptr for
consistency.
Note this syzkaller crash was reported in the "Closes" link below, which
used to be about a different bug, fixed in
commit fce7bd8e385a ("bpf/verifier: Handle BPF_LOAD_ACQ instructions
in insn_def_regno()"). Because syzbot somehow confused the two bugs,
the new crash and repro didn't get reported to the mailing list. |
In the Linux kernel, the following vulnerability has been resolved:
net/mlx5e: Remove skb secpath if xfrm state is not found
Hardware returns a unique identifier for a decrypted packet's xfrm
state, this state is looked up in an xarray. However, the state might
have been freed by the time of this lookup.
Currently, if the state is not found, only a counter is incremented.
The secpath (sp) extension on the skb is not removed, resulting in
sp->len becoming 0.
Subsequently, functions like __xfrm_policy_check() attempt to access
fields such as xfrm_input_state(skb)->xso.type (which dereferences
sp->xvec[sp->len - 1]) without first validating sp->len. This leads to
a crash when dereferencing an invalid state pointer.
This patch prevents the crash by explicitly removing the secpath
extension from the skb if the xfrm state is not found after hardware
decryption. This ensures downstream functions do not operate on a
zero-length secpath.
BUG: unable to handle page fault for address: ffffffff000002c8
#PF: supervisor read access in kernel mode
#PF: error_code(0x0000) - not-present page
PGD 282e067 P4D 282e067 PUD 0
Oops: Oops: 0000 [#1] SMP
CPU: 12 UID: 0 PID: 0 Comm: swapper/12 Not tainted 6.15.0-rc7_for_upstream_min_debug_2025_05_27_22_44 #1 NONE
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014
RIP: 0010:__xfrm_policy_check+0x61a/0xa30
Code: b6 77 7f 83 e6 02 74 14 4d 8b af d8 00 00 00 41 0f b6 45 05 c1 e0 03 48 98 49 01 c5 41 8b 45 00 83 e8 01 48 98 49 8b 44 c5 10 <0f> b6 80 c8 02 00 00 83 e0 0c 3c 04 0f 84 0c 02 00 00 31 ff 80 fa
RSP: 0018:ffff88885fb04918 EFLAGS: 00010297
RAX: ffffffff00000000 RBX: 0000000000000002 RCX: 0000000000000000
RDX: 0000000000000002 RSI: 0000000000000002 RDI: 0000000000000000
RBP: ffffffff8311af80 R08: 0000000000000020 R09: 00000000c2eda353
R10: ffff88812be2bbc8 R11: 000000001faab533 R12: ffff88885fb049c8
R13: ffff88812be2bbc8 R14: 0000000000000000 R15: ffff88811896ae00
FS: 0000000000000000(0000) GS:ffff8888dca82000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: ffffffff000002c8 CR3: 0000000243050002 CR4: 0000000000372eb0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<IRQ>
? try_to_wake_up+0x108/0x4c0
? udp4_lib_lookup2+0xbe/0x150
? udp_lib_lport_inuse+0x100/0x100
? __udp4_lib_lookup+0x2b0/0x410
__xfrm_policy_check2.constprop.0+0x11e/0x130
udp_queue_rcv_one_skb+0x1d/0x530
udp_unicast_rcv_skb+0x76/0x90
__udp4_lib_rcv+0xa64/0xe90
ip_protocol_deliver_rcu+0x20/0x130
ip_local_deliver_finish+0x75/0xa0
ip_local_deliver+0xc1/0xd0
? ip_protocol_deliver_rcu+0x130/0x130
ip_sublist_rcv+0x1f9/0x240
? ip_rcv_finish_core+0x430/0x430
ip_list_rcv+0xfc/0x130
__netif_receive_skb_list_core+0x181/0x1e0
netif_receive_skb_list_internal+0x200/0x360
? mlx5e_build_rx_skb+0x1bc/0xda0 [mlx5_core]
gro_receive_skb+0xfd/0x210
mlx5e_handle_rx_cqe_mpwrq+0x141/0x280 [mlx5_core]
mlx5e_poll_rx_cq+0xcc/0x8e0 [mlx5_core]
? mlx5e_handle_rx_dim+0x91/0xd0 [mlx5_core]
mlx5e_napi_poll+0x114/0xab0 [mlx5_core]
__napi_poll+0x25/0x170
net_rx_action+0x32d/0x3a0
? mlx5_eq_comp_int+0x8d/0x280 [mlx5_core]
? notifier_call_chain+0x33/0xa0
handle_softirqs+0xda/0x250
irq_exit_rcu+0x6d/0xc0
common_interrupt+0x81/0xa0
</IRQ> |
In the Linux kernel, the following vulnerability has been resolved:
neighbour: Fix null-ptr-deref in neigh_flush_dev().
kernel test robot reported null-ptr-deref in neigh_flush_dev(). [0]
The cited commit introduced per-netdev neighbour list and converted
neigh_flush_dev() to use it instead of the global hash table.
One thing we missed is that neigh_table_clear() calls neigh_ifdown()
with NULL dev.
Let's restore the hash table iteration.
Note that IPv6 module is no longer unloadable, so neigh_table_clear()
is called only when IPv6 fails to initialise, which is unlikely to
happen.
[0]:
IPv6: Attempt to unregister permanent protocol 136
IPv6: Attempt to unregister permanent protocol 17
Oops: general protection fault, probably for non-canonical address 0xdffffc00000001a0: 0000 [#1] SMP KASAN
KASAN: null-ptr-deref in range [0x0000000000000d00-0x0000000000000d07]
CPU: 1 UID: 0 PID: 1 Comm: systemd Tainted: G T 6.12.0-rc6-01246-gf7f52738637f #1
Tainted: [T]=RANDSTRUCT
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.2-debian-1.16.2-1 04/01/2014
RIP: 0010:neigh_flush_dev.llvm.6395807810224103582+0x52/0x570
Code: c1 e8 03 42 8a 04 38 84 c0 0f 85 15 05 00 00 31 c0 41 83 3e 0a 0f 94 c0 48 8d 1c c3 48 81 c3 f8 0c 00 00 48 89 d8 48 c1 e8 03 <42> 80 3c 38 00 74 08 48 89 df e8 f7 49 93 fe 4c 8b 3b 4d 85 ff 0f
RSP: 0000:ffff88810026f408 EFLAGS: 00010206
RAX: 00000000000001a0 RBX: 0000000000000d00 RCX: 0000000000000000
RDX: 0000000000000000 RSI: 0000000000000000 RDI: ffffffffc0631640
RBP: ffff88810026f470 R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000000 R12: 0000000000000000
R13: ffffffffc0625250 R14: ffffffffc0631640 R15: dffffc0000000000
FS: 00007f575cb83940(0000) GS:ffff8883aee00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f575db40008 CR3: 00000002bf936000 CR4: 00000000000406f0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
__neigh_ifdown.llvm.6395807810224103582+0x44/0x390
neigh_table_clear+0xb1/0x268
ndisc_cleanup+0x21/0x38 [ipv6]
init_module+0x2f5/0x468 [ipv6]
do_one_initcall+0x1ba/0x628
do_init_module+0x21a/0x530
load_module+0x2550/0x2ea0
__se_sys_finit_module+0x3d2/0x620
__x64_sys_finit_module+0x76/0x88
x64_sys_call+0x7ff/0xde8
do_syscall_64+0xfb/0x1e8
entry_SYSCALL_64_after_hwframe+0x67/0x6f
RIP: 0033:0x7f575d6f2719
Code: 08 89 e8 5b 5d c3 66 2e 0f 1f 84 00 00 00 00 00 90 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 8b 0d b7 06 0d 00 f7 d8 64 89 01 48
RSP: 002b:00007fff82a2a268 EFLAGS: 00000246 ORIG_RAX: 0000000000000139
RAX: ffffffffffffffda RBX: 0000557827b45310 RCX: 00007f575d6f2719
RDX: 0000000000000000 RSI: 00007f575d584efd RDI: 0000000000000004
RBP: 00007f575d584efd R08: 0000000000000000 R09: 0000557827b47b00
R10: 0000000000000004 R11: 0000000000000246 R12: 0000000000020000
R13: 0000000000000000 R14: 0000557827b470e0 R15: 00007f575dbb4270
</TASK>
Modules linked in: ipv6(+) |
In the Linux kernel, the following vulnerability has been resolved:
ipv6: prevent infinite loop in rt6_nlmsg_size()
While testing prior patch, I was able to trigger
an infinite loop in rt6_nlmsg_size() in the following place:
list_for_each_entry_rcu(sibling, &f6i->fib6_siblings,
fib6_siblings) {
rt6_nh_nlmsg_size(sibling->fib6_nh, &nexthop_len);
}
This is because fib6_del_route() and fib6_add_rt2node()
uses list_del_rcu(), which can confuse rcu readers,
because they might no longer see the head of the list.
Restart the loop if f6i->fib6_nsiblings is zero. |
In the Linux kernel, the following vulnerability has been resolved:
ipv6: fix possible infinite loop in fib6_info_uses_dev()
fib6_info_uses_dev() seems to rely on RCU without an explicit
protection.
Like the prior fix in rt6_nlmsg_size(),
we need to make sure fib6_del_route() or fib6_add_rt2node()
have not removed the anchor from the list, or we risk an infinite loop. |
In the Linux kernel, the following vulnerability has been resolved:
bpf, arm64: Fix fp initialization for exception boundary
In the ARM64 BPF JIT when prog->aux->exception_boundary is set for a BPF
program, find_used_callee_regs() is not called because for a program
acting as exception boundary, all callee saved registers are saved.
find_used_callee_regs() sets `ctx->fp_used = true;` when it sees FP
being used in any of the instructions.
For programs acting as exception boundary, ctx->fp_used remains false
even if frame pointer is used by the program and therefore, FP is not
set-up for such programs in the prologue. This can cause the kernel to
crash due to a pagefault.
Fix it by setting ctx->fp_used = true for exception boundary programs as
fp is always saved in such programs. |
In the Linux kernel, the following vulnerability has been resolved:
staging: media: atomisp: Fix stack buffer overflow in gmin_get_var_int()
When gmin_get_config_var() calls efi.get_variable() and the EFI variable
is larger than the expected buffer size, two behaviors combine to create
a stack buffer overflow:
1. gmin_get_config_var() does not return the proper error code when
efi.get_variable() fails. It returns the stale 'ret' value from
earlier operations instead of indicating the EFI failure.
2. When efi.get_variable() returns EFI_BUFFER_TOO_SMALL, it updates
*out_len to the required buffer size but writes no data to the output
buffer. However, due to bug #1, gmin_get_var_int() believes the call
succeeded.
The caller gmin_get_var_int() then performs:
- Allocates val[CFG_VAR_NAME_MAX + 1] (65 bytes) on stack
- Calls gmin_get_config_var(dev, is_gmin, var, val, &len) with len=64
- If EFI variable is >64 bytes, efi.get_variable() sets len=required_size
- Due to bug #1, thinks call succeeded with len=required_size
- Executes val[len] = 0, writing past end of 65-byte stack buffer
This creates a stack buffer overflow when EFI variables are larger than
64 bytes. Since EFI variables can be controlled by firmware or system
configuration, this could potentially be exploited for code execution.
Fix the bug by returning proper error codes from gmin_get_config_var()
based on EFI status instead of stale 'ret' value.
The gmin_get_var_int() function is called during device initialization
for camera sensor configuration on Intel Bay Trail and Cherry Trail
platforms using the atomisp camera stack. |
In the Linux kernel, the following vulnerability has been resolved:
padata: Fix pd UAF once and for all
There is a race condition/UAF in padata_reorder that goes back
to the initial commit. A reference count is taken at the start
of the process in padata_do_parallel, and released at the end in
padata_serial_worker.
This reference count is (and only is) required for padata_replace
to function correctly. If padata_replace is never called then
there is no issue.
In the function padata_reorder which serves as the core of padata,
as soon as padata is added to queue->serial.list, and the associated
spin lock released, that padata may be processed and the reference
count on pd would go away.
Fix this by getting the next padata before the squeue->serial lock
is released.
In order to make this possible, simplify padata_reorder by only
calling it once the next padata arrives. |
In the Linux kernel, the following vulnerability has been resolved:
clk: xilinx: vcu: unregister pll_post only if registered correctly
If registration of pll_post is failed, it will be set to NULL or ERR,
unregistering same will fail with following call trace:
Unable to handle kernel NULL pointer dereference at virtual address 008
pc : clk_hw_unregister+0xc/0x20
lr : clk_hw_unregister_fixed_factor+0x18/0x30
sp : ffff800011923850
...
Call trace:
clk_hw_unregister+0xc/0x20
clk_hw_unregister_fixed_factor+0x18/0x30
xvcu_unregister_clock_provider+0xcc/0xf4 [xlnx_vcu]
xvcu_probe+0x2bc/0x53c [xlnx_vcu] |
In the Linux kernel, the following vulnerability has been resolved:
RDMA/hns: Fix double destruction of rsv_qp
rsv_qp may be double destroyed in error flow, first in free_mr_init(),
and then in hns_roce_exit(). Fix it by moving the free_mr_init() call
into hns_roce_v2_init().
list_del corruption, ffff589732eb9b50->next is LIST_POISON1 (dead000000000100)
WARNING: CPU: 8 PID: 1047115 at lib/list_debug.c:53 __list_del_entry_valid+0x148/0x240
...
Call trace:
__list_del_entry_valid+0x148/0x240
hns_roce_qp_remove+0x4c/0x3f0 [hns_roce_hw_v2]
hns_roce_v2_destroy_qp_common+0x1dc/0x5f4 [hns_roce_hw_v2]
hns_roce_v2_destroy_qp+0x22c/0x46c [hns_roce_hw_v2]
free_mr_exit+0x6c/0x120 [hns_roce_hw_v2]
hns_roce_v2_exit+0x170/0x200 [hns_roce_hw_v2]
hns_roce_exit+0x118/0x350 [hns_roce_hw_v2]
__hns_roce_hw_v2_init_instance+0x1c8/0x304 [hns_roce_hw_v2]
hns_roce_hw_v2_reset_notify_init+0x170/0x21c [hns_roce_hw_v2]
hns_roce_hw_v2_reset_notify+0x6c/0x190 [hns_roce_hw_v2]
hclge_notify_roce_client+0x6c/0x160 [hclge]
hclge_reset_rebuild+0x150/0x5c0 [hclge]
hclge_reset+0x10c/0x140 [hclge]
hclge_reset_subtask+0x80/0x104 [hclge]
hclge_reset_service_task+0x168/0x3ac [hclge]
hclge_service_task+0x50/0x100 [hclge]
process_one_work+0x250/0x9a0
worker_thread+0x324/0x990
kthread+0x190/0x210
ret_from_fork+0x10/0x18 |
In the Linux kernel, the following vulnerability has been resolved:
crypto: ccp - Fix crash when rebind ccp device for ccp.ko
When CONFIG_CRYPTO_DEV_CCP_DEBUGFS is enabled, rebinding
the ccp device causes the following crash:
$ echo '0000:0a:00.2' > /sys/bus/pci/drivers/ccp/unbind
$ echo '0000:0a:00.2' > /sys/bus/pci/drivers/ccp/bind
[ 204.976930] BUG: kernel NULL pointer dereference, address: 0000000000000098
[ 204.978026] #PF: supervisor write access in kernel mode
[ 204.979126] #PF: error_code(0x0002) - not-present page
[ 204.980226] PGD 0 P4D 0
[ 204.981317] Oops: Oops: 0002 [#1] SMP NOPTI
...
[ 204.997852] Call Trace:
[ 204.999074] <TASK>
[ 205.000297] start_creating+0x9f/0x1c0
[ 205.001533] debugfs_create_dir+0x1f/0x170
[ 205.002769] ? srso_return_thunk+0x5/0x5f
[ 205.004000] ccp5_debugfs_setup+0x87/0x170 [ccp]
[ 205.005241] ccp5_init+0x8b2/0x960 [ccp]
[ 205.006469] ccp_dev_init+0xd4/0x150 [ccp]
[ 205.007709] sp_init+0x5f/0x80 [ccp]
[ 205.008942] sp_pci_probe+0x283/0x2e0 [ccp]
[ 205.010165] ? srso_return_thunk+0x5/0x5f
[ 205.011376] local_pci_probe+0x4f/0xb0
[ 205.012584] pci_device_probe+0xdb/0x230
[ 205.013810] really_probe+0xed/0x380
[ 205.015024] __driver_probe_device+0x7e/0x160
[ 205.016240] device_driver_attach+0x2f/0x60
[ 205.017457] bind_store+0x7c/0xb0
[ 205.018663] drv_attr_store+0x28/0x40
[ 205.019868] sysfs_kf_write+0x5f/0x70
[ 205.021065] kernfs_fop_write_iter+0x145/0x1d0
[ 205.022267] vfs_write+0x308/0x440
[ 205.023453] ksys_write+0x6d/0xe0
[ 205.024616] __x64_sys_write+0x1e/0x30
[ 205.025778] x64_sys_call+0x16ba/0x2150
[ 205.026942] do_syscall_64+0x56/0x1e0
[ 205.028108] entry_SYSCALL_64_after_hwframe+0x76/0x7e
[ 205.029276] RIP: 0033:0x7fbc36f10104
[ 205.030420] Code: 89 02 48 c7 c0 ff ff ff ff c3 66 2e 0f 1f 84 00 00 00 00 00 66 90 48 8d 05 e1 08 2e 00 8b 00 85 c0 75 13 b8 01 00 00 00 0f 05 <48> 3d 00 f0 ff ff 77 54 f3 c3 66 90 41 54 55 49 89 d4 53 48 89 f5
This patch sets ccp_debugfs_dir to NULL after destroying it in
ccp5_debugfs_destroy, allowing the directory dentry to be
recreated when rebinding the ccp device.
Tested on AMD Ryzen 7 1700X. |
In the Linux kernel, the following vulnerability has been resolved:
ext4: fix inode use after free in ext4_end_io_rsv_work()
In ext4_io_end_defer_completion(), check if io_end->list_vec is empty to
avoid adding an io_end that requires no conversion to the
i_rsv_conversion_list, which in turn prevents starting an unnecessary
worker. An ext4_emergency_state() check is also added to avoid attempting
to abort the journal in an emergency state.
Additionally, ext4_put_io_end_defer() is refactored to call
ext4_io_end_defer_completion() directly instead of being open-coded.
This also prevents starting an unnecessary worker when EXT4_IO_END_FAILED
is set but data_err=abort is not enabled.
This ensures that the check in ext4_put_io_end_defer() is consistent with
the check in ext4_end_bio(). Otherwise, we might add an io_end to the
i_rsv_conversion_list and then call ext4_finish_bio(), after which the
inode could be freed before ext4_end_io_rsv_work() is called, triggering
a use-after-free issue. |
In the Linux kernel, the following vulnerability has been resolved:
f2fs: fix KMSAN uninit-value in extent_info usage
KMSAN reported a use of uninitialized value in `__is_extent_mergeable()`
and `__is_back_mergeable()` via the read extent tree path.
The root cause is that `get_read_extent_info()` only initializes three
fields (`fofs`, `blk`, `len`) of `struct extent_info`, leaving the
remaining fields uninitialized. This leads to undefined behavior
when those fields are accessed later, especially during
extent merging.
Fix it by zero-initializing the `extent_info` struct before population. |