CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
In the Linux kernel, the following vulnerability has been resolved:
usb: gadget: u_serial: Fix race condition in TTY wakeup
A race condition occurs when gs_start_io() calls either gs_start_rx() or
gs_start_tx(), as those functions briefly drop the port_lock for
usb_ep_queue(). This allows gs_close() and gserial_disconnect() to clear
port.tty and port_usb, respectively.
Use the null-safe TTY Port helper function to wake up TTY.
Example
CPU1: CPU2:
gserial_connect() // lock
gs_close() // await lock
gs_start_rx() // unlock
usb_ep_queue()
gs_close() // lock, reset port.tty and unlock
gs_start_rx() // lock
tty_wakeup() // NPE |
In the Linux kernel, the following vulnerability has been resolved:
ksmbd: fix potential use-after-free in oplock/lease break ack
If ksmbd_iov_pin_rsp return error, use-after-free can happen by
accessing opinfo->state and opinfo_put and ksmbd_fd_put could
called twice. |
In the Linux kernel, the following vulnerability has been resolved:
atm: clip: Fix infinite recursive call of clip_push().
syzbot reported the splat below. [0]
This happens if we call ioctl(ATMARP_MKIP) more than once.
During the first call, clip_mkip() sets clip_push() to vcc->push(),
and the second call copies it to clip_vcc->old_push().
Later, when the socket is close()d, vcc_destroy_socket() passes
NULL skb to clip_push(), which calls clip_vcc->old_push(),
triggering the infinite recursion.
Let's prevent the second ioctl(ATMARP_MKIP) by checking
vcc->user_back, which is allocated by the first call as clip_vcc.
Note also that we use lock_sock() to prevent racy calls.
[0]:
BUG: TASK stack guard page was hit at ffffc9000d66fff8 (stack is ffffc9000d670000..ffffc9000d678000)
Oops: stack guard page: 0000 [#1] SMP KASAN NOPTI
CPU: 0 UID: 0 PID: 5322 Comm: syz.0.0 Not tainted 6.16.0-rc4-syzkaller #0 PREEMPT(full)
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-debian-1.16.3-2~bpo12+1 04/01/2014
RIP: 0010:clip_push+0x5/0x720 net/atm/clip.c:191
Code: e0 8f aa 8c e8 1c ad 5b fa eb ae 66 2e 0f 1f 84 00 00 00 00 00 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 f3 0f 1e fa 55 <41> 57 41 56 41 55 41 54 53 48 83 ec 20 48 89 f3 49 89 fd 48 bd 00
RSP: 0018:ffffc9000d670000 EFLAGS: 00010246
RAX: 1ffff1100235a4a5 RBX: ffff888011ad2508 RCX: ffff8880003c0000
RDX: 0000000000000000 RSI: 0000000000000000 RDI: ffff888037f01000
RBP: dffffc0000000000 R08: ffffffff8fa104f7 R09: 1ffffffff1f4209e
R10: dffffc0000000000 R11: ffffffff8a99b300 R12: ffffffff8a99b300
R13: ffff888037f01000 R14: ffff888011ad2500 R15: ffff888037f01578
FS: 000055557ab6d500(0000) GS:ffff88808d250000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: ffffc9000d66fff8 CR3: 0000000043172000 CR4: 0000000000352ef0
Call Trace:
<TASK>
clip_push+0x6dc/0x720 net/atm/clip.c:200
clip_push+0x6dc/0x720 net/atm/clip.c:200
clip_push+0x6dc/0x720 net/atm/clip.c:200
...
clip_push+0x6dc/0x720 net/atm/clip.c:200
clip_push+0x6dc/0x720 net/atm/clip.c:200
clip_push+0x6dc/0x720 net/atm/clip.c:200
vcc_destroy_socket net/atm/common.c:183 [inline]
vcc_release+0x157/0x460 net/atm/common.c:205
__sock_release net/socket.c:647 [inline]
sock_close+0xc0/0x240 net/socket.c:1391
__fput+0x449/0xa70 fs/file_table.c:465
task_work_run+0x1d1/0x260 kernel/task_work.c:227
resume_user_mode_work include/linux/resume_user_mode.h:50 [inline]
exit_to_user_mode_loop+0xec/0x110 kernel/entry/common.c:114
exit_to_user_mode_prepare include/linux/entry-common.h:330 [inline]
syscall_exit_to_user_mode_work include/linux/entry-common.h:414 [inline]
syscall_exit_to_user_mode include/linux/entry-common.h:449 [inline]
do_syscall_64+0x2bd/0x3b0 arch/x86/entry/syscall_64.c:100
entry_SYSCALL_64_after_hwframe+0x77/0x7f
RIP: 0033:0x7ff31c98e929
Code: ff ff c3 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 40 00 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 a8 ff ff ff f7 d8 64 89 01 48
RSP: 002b:00007fffb5aa1f78 EFLAGS: 00000246 ORIG_RAX: 00000000000001b4
RAX: 0000000000000000 RBX: 0000000000012747 RCX: 00007ff31c98e929
RDX: 0000000000000000 RSI: 000000000000001e RDI: 0000000000000003
RBP: 00007ff31cbb7ba0 R08: 0000000000000001 R09: 0000000db5aa226f
R10: 00007ff31c7ff030 R11: 0000000000000246 R12: 00007ff31cbb608c
R13: 00007ff31cbb6080 R14: ffffffffffffffff R15: 00007fffb5aa2090
</TASK>
Modules linked in: |
In the Linux kernel, the following vulnerability has been resolved:
wifi: mt76: mt7925: prevent NULL pointer dereference in mt7925_sta_set_decap_offload()
Add a NULL check for msta->vif before accessing its members to prevent
a kernel panic in AP mode deployment. This also fix the issue reported
in [1].
The crash occurs when this function is triggered before the station is
fully initialized. The call trace shows a page fault at
mt7925_sta_set_decap_offload() due to accessing resources when msta->vif
is NULL.
Fix this by adding an early return if msta->vif is NULL and also check
wcid.sta is ready. This ensures we only proceed with decap offload
configuration when the station's state is properly initialized.
[14739.655703] Unable to handle kernel paging request at virtual address ffffffffffffffa0
[14739.811820] CPU: 0 UID: 0 PID: 895854 Comm: hostapd Tainted: G
[14739.821394] Tainted: [C]=CRAP, [O]=OOT_MODULE
[14739.825746] Hardware name: Raspberry Pi 4 Model B Rev 1.1 (DT)
[14739.831577] pstate: 60000005 (nZCv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--)
[14739.838538] pc : mt7925_sta_set_decap_offload+0xc0/0x1b8 [mt7925_common]
[14739.845271] lr : mt7925_sta_set_decap_offload+0x58/0x1b8 [mt7925_common]
[14739.851985] sp : ffffffc085efb500
[14739.855295] x29: ffffffc085efb500 x28: 0000000000000000 x27: ffffff807803a158
[14739.862436] x26: ffffff8041ececb8 x25: 0000000000000001 x24: 0000000000000001
[14739.869577] x23: 0000000000000001 x22: 0000000000000008 x21: ffffff8041ecea88
[14739.876715] x20: ffffff8041c19ca0 x19: ffffff8078031fe0 x18: 0000000000000000
[14739.883853] x17: 0000000000000000 x16: ffffffe2aeac1110 x15: 000000559da48080
[14739.890991] x14: 0000000000000001 x13: 0000000000000000 x12: 0000000000000000
[14739.898130] x11: 0a10020001008e88 x10: 0000000000001a50 x9 : ffffffe26457bfa0
[14739.905269] x8 : ffffff8042013bb0 x7 : ffffff807fb6cbf8 x6 : dead000000000100
[14739.912407] x5 : dead000000000122 x4 : ffffff80780326c8 x3 : 0000000000000000
[14739.919546] x2 : 0000000000000000 x1 : 0000000000000000 x0 : ffffff8041ececb8
[14739.926686] Call trace:
[14739.929130] mt7925_sta_set_decap_offload+0xc0/0x1b8 [mt7925_common]
[14739.935505] ieee80211_check_fast_rx+0x19c/0x510 [mac80211]
[14739.941344] _sta_info_move_state+0xe4/0x510 [mac80211]
[14739.946860] sta_info_move_state+0x1c/0x30 [mac80211]
[14739.952116] sta_apply_auth_flags.constprop.0+0x90/0x1b0 [mac80211]
[14739.958708] sta_apply_parameters+0x234/0x5e0 [mac80211]
[14739.964332] ieee80211_add_station+0xdc/0x190 [mac80211]
[14739.969950] nl80211_new_station+0x46c/0x670 [cfg80211]
[14739.975516] genl_family_rcv_msg_doit+0xdc/0x150
[14739.980158] genl_rcv_msg+0x218/0x298
[14739.983830] netlink_rcv_skb+0x64/0x138
[14739.987670] genl_rcv+0x40/0x60
[14739.990816] netlink_unicast+0x314/0x380
[14739.994742] netlink_sendmsg+0x198/0x3f0
[14739.998664] __sock_sendmsg+0x64/0xc0
[14740.002324] ____sys_sendmsg+0x260/0x298
[14740.006242] ___sys_sendmsg+0xb4/0x110 |
In the Linux kernel, the following vulnerability has been resolved:
net: ethernet: rtsn: Fix a null pointer dereference in rtsn_probe()
Add check for the return value of rcar_gen4_ptp_alloc()
to prevent potential null pointer dereference. |
In the Linux kernel, the following vulnerability has been resolved:
ALSA: ad1816a: Fix potential NULL pointer deref in snd_card_ad1816a_pnp()
Use pr_warn() instead of dev_warn() when 'pdev' is NULL to avoid a
potential NULL pointer dereference. |
In the Linux kernel, the following vulnerability has been resolved:
vsock: Fix transport_* TOCTOU
Transport assignment may race with module unload. Protect new_transport
from becoming a stale pointer.
This also takes care of an insecure call in vsock_use_local_transport();
add a lockdep assert.
BUG: unable to handle page fault for address: fffffbfff8056000
Oops: Oops: 0000 [#1] SMP KASAN
RIP: 0010:vsock_assign_transport+0x366/0x600
Call Trace:
vsock_connect+0x59c/0xc40
__sys_connect+0xe8/0x100
__x64_sys_connect+0x6e/0xc0
do_syscall_64+0x92/0x1c0
entry_SYSCALL_64_after_hwframe+0x4b/0x53 |
In the Linux kernel, the following vulnerability has been resolved:
perf: Revert to requiring CAP_SYS_ADMIN for uprobes
Jann reports that uprobes can be used destructively when used in the
middle of an instruction. The kernel only verifies there is a valid
instruction at the requested offset, but due to variable instruction
length cannot determine if this is an instruction as seen by the
intended execution stream.
Additionally, Mark Rutland notes that on architectures that mix data
in the text segment (like arm64), a similar things can be done if the
data word is 'mistaken' for an instruction.
As such, require CAP_SYS_ADMIN for uprobes. |
In the Linux kernel, the following vulnerability has been resolved:
vsock: Fix transport_{g2h,h2g} TOCTOU
vsock_find_cid() and vsock_dev_do_ioctl() may race with module unload.
transport_{g2h,h2g} may become NULL after the NULL check.
Introduce vsock_transport_local_cid() to protect from a potential
null-ptr-deref.
KASAN: null-ptr-deref in range [0x0000000000000118-0x000000000000011f]
RIP: 0010:vsock_find_cid+0x47/0x90
Call Trace:
__vsock_bind+0x4b2/0x720
vsock_bind+0x90/0xe0
__sys_bind+0x14d/0x1e0
__x64_sys_bind+0x6e/0xc0
do_syscall_64+0x92/0x1c0
entry_SYSCALL_64_after_hwframe+0x4b/0x53
KASAN: null-ptr-deref in range [0x0000000000000118-0x000000000000011f]
RIP: 0010:vsock_dev_do_ioctl.isra.0+0x58/0xf0
Call Trace:
__x64_sys_ioctl+0x12d/0x190
do_syscall_64+0x92/0x1c0
entry_SYSCALL_64_after_hwframe+0x4b/0x53 |
In the Linux kernel, the following vulnerability has been resolved:
atm: clip: Fix potential null-ptr-deref in to_atmarpd().
atmarpd is protected by RTNL since commit f3a0592b37b8 ("[ATM]: clip
causes unregister hang").
However, it is not enough because to_atmarpd() is called without RTNL,
especially clip_neigh_solicit() / neigh_ops->solicit() is unsleepable.
Also, there is no RTNL dependency around atmarpd.
Let's use a private mutex and RCU to protect access to atmarpd in
to_atmarpd(). |
In the Linux kernel, the following vulnerability has been resolved:
net/sched: Abort __tc_modify_qdisc if parent class does not exist
Lion's patch [1] revealed an ancient bug in the qdisc API.
Whenever a user creates/modifies a qdisc specifying as a parent another
qdisc, the qdisc API will, during grafting, detect that the user is
not trying to attach to a class and reject. However grafting is
performed after qdisc_create (and thus the qdiscs' init callback) is
executed. In qdiscs that eventually call qdisc_tree_reduce_backlog
during init or change (such as fq, hhf, choke, etc), an issue
arises. For example, executing the following commands:
sudo tc qdisc add dev lo root handle a: htb default 2
sudo tc qdisc add dev lo parent a: handle beef fq
Qdiscs such as fq, hhf, choke, etc unconditionally invoke
qdisc_tree_reduce_backlog() in their control path init() or change() which
then causes a failure to find the child class; however, that does not stop
the unconditional invocation of the assumed child qdisc's qlen_notify with
a null class. All these qdiscs make the assumption that class is non-null.
The solution is ensure that qdisc_leaf() which looks up the parent
class, and is invoked prior to qdisc_create(), should return failure on
not finding the class.
In this patch, we leverage qdisc_leaf to return ERR_PTRs whenever the
parentid doesn't correspond to a class, so that we can detect it
earlier on and abort before qdisc_create is called.
[1] https://lore.kernel.org/netdev/d912cbd7-193b-4269-9857-525bee8bbb6a@gmail.com/ |
In the Linux kernel, the following vulnerability has been resolved:
ipmi:msghandler: Fix potential memory corruption in ipmi_create_user()
The "intf" list iterator is an invalid pointer if the correct
"intf->intf_num" is not found. Calling atomic_dec(&intf->nr_users) on
and invalid pointer will lead to memory corruption.
We don't really need to call atomic_dec() if we haven't called
atomic_add_return() so update the if (intf->in_shutdown) path as well. |
In the Linux kernel, the following vulnerability has been resolved:
KVM: x86/xen: Fix cleanup logic in emulation of Xen schedop poll hypercalls
kvm_xen_schedop_poll does a kmalloc_array() when a VM polls the host
for more than one event channel potr (nr_ports > 1).
After the kmalloc_array(), the error paths need to go through the
"out" label, but the call to kvm_read_guest_virt() does not.
[Adjusted commit message. - Paolo] |
In the Linux kernel, the following vulnerability has been resolved:
netfilter: nf_conntrack: fix crash due to removal of uninitialised entry
A crash in conntrack was reported while trying to unlink the conntrack
entry from the hash bucket list:
[exception RIP: __nf_ct_delete_from_lists+172]
[..]
#7 [ff539b5a2b043aa0] nf_ct_delete at ffffffffc124d421 [nf_conntrack]
#8 [ff539b5a2b043ad0] nf_ct_gc_expired at ffffffffc124d999 [nf_conntrack]
#9 [ff539b5a2b043ae0] __nf_conntrack_find_get at ffffffffc124efbc [nf_conntrack]
[..]
The nf_conn struct is marked as allocated from slab but appears to be in
a partially initialised state:
ct hlist pointer is garbage; looks like the ct hash value
(hence crash).
ct->status is equal to IPS_CONFIRMED|IPS_DYING, which is expected
ct->timeout is 30000 (=30s), which is unexpected.
Everything else looks like normal udp conntrack entry. If we ignore
ct->status and pretend its 0, the entry matches those that are newly
allocated but not yet inserted into the hash:
- ct hlist pointers are overloaded and store/cache the raw tuple hash
- ct->timeout matches the relative time expected for a new udp flow
rather than the absolute 'jiffies' value.
If it were not for the presence of IPS_CONFIRMED,
__nf_conntrack_find_get() would have skipped the entry.
Theory is that we did hit following race:
cpu x cpu y cpu z
found entry E found entry E
E is expired <preemption>
nf_ct_delete()
return E to rcu slab
init_conntrack
E is re-inited,
ct->status set to 0
reply tuplehash hnnode.pprev
stores hash value.
cpu y found E right before it was deleted on cpu x.
E is now re-inited on cpu z. cpu y was preempted before
checking for expiry and/or confirm bit.
->refcnt set to 1
E now owned by skb
->timeout set to 30000
If cpu y were to resume now, it would observe E as
expired but would skip E due to missing CONFIRMED bit.
nf_conntrack_confirm gets called
sets: ct->status |= CONFIRMED
This is wrong: E is not yet added
to hashtable.
cpu y resumes, it observes E as expired but CONFIRMED:
<resumes>
nf_ct_expired()
-> yes (ct->timeout is 30s)
confirmed bit set.
cpu y will try to delete E from the hashtable:
nf_ct_delete() -> set DYING bit
__nf_ct_delete_from_lists
Even this scenario doesn't guarantee a crash:
cpu z still holds the table bucket lock(s) so y blocks:
wait for spinlock held by z
CONFIRMED is set but there is no
guarantee ct will be added to hash:
"chaintoolong" or "clash resolution"
logic both skip the insert step.
reply hnnode.pprev still stores the
hash value.
unlocks spinlock
return NF_DROP
<unblocks, then
crashes on hlist_nulls_del_rcu pprev>
In case CPU z does insert the entry into the hashtable, cpu y will unlink
E again right away but no crash occurs.
Without 'cpu y' race, 'garbage' hlist is of no consequence:
ct refcnt remains at 1, eventually skb will be free'd and E gets
destroyed via: nf_conntrack_put -> nf_conntrack_destroy -> nf_ct_destroy.
To resolve this, move the IPS_CONFIRMED assignment after the table
insertion but before the unlock.
Pablo points out that the confirm-bit-store could be reordered to happen
before hlist add resp. the timeout fixup, so switch to set_bit and
before_atomic memory barrier to prevent this.
It doesn't matter if other CPUs can observe a newly inserted entry right
before the CONFIRMED bit was set:
Such event cannot be distinguished from above "E is the old incarnation"
case: the entry will be skipped.
Also change nf_ct_should_gc() to first check the confirmed bit.
The gc sequence is:
1. Check if entry has expired, if not skip to next entry
2. Obtain a reference to the expired entry.
3. Call nf_ct_should_gc() to double-check step 1.
nf_ct_should_gc() is thus called only for entries that already failed an
expiry check. After this patch, once the confirmed bit check pas
---truncated--- |
In the Linux kernel, the following vulnerability has been resolved:
dm-bufio: fix sched in atomic context
If "try_verify_in_tasklet" is set for dm-verity, DM_BUFIO_CLIENT_NO_SLEEP
is enabled for dm-bufio. However, when bufio tries to evict buffers, there
is a chance to trigger scheduling in spin_lock_bh, the following warning
is hit:
BUG: sleeping function called from invalid context at drivers/md/dm-bufio.c:2745
in_atomic(): 1, irqs_disabled(): 0, non_block: 0, pid: 123, name: kworker/2:2
preempt_count: 201, expected: 0
RCU nest depth: 0, expected: 0
4 locks held by kworker/2:2/123:
#0: ffff88800a2d1548 ((wq_completion)dm_bufio_cache){....}-{0:0}, at: process_one_work+0xe46/0x1970
#1: ffffc90000d97d20 ((work_completion)(&dm_bufio_replacement_work)){....}-{0:0}, at: process_one_work+0x763/0x1970
#2: ffffffff8555b528 (dm_bufio_clients_lock){....}-{3:3}, at: do_global_cleanup+0x1ce/0x710
#3: ffff88801d5820b8 (&c->spinlock){....}-{2:2}, at: do_global_cleanup+0x2a5/0x710
Preemption disabled at:
[<0000000000000000>] 0x0
CPU: 2 UID: 0 PID: 123 Comm: kworker/2:2 Not tainted 6.16.0-rc3-g90548c634bd0 #305 PREEMPT(voluntary)
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.3-0-ga6ed6b701f0a-prebuilt.qemu.org 04/01/2014
Workqueue: dm_bufio_cache do_global_cleanup
Call Trace:
<TASK>
dump_stack_lvl+0x53/0x70
__might_resched+0x360/0x4e0
do_global_cleanup+0x2f5/0x710
process_one_work+0x7db/0x1970
worker_thread+0x518/0xea0
kthread+0x359/0x690
ret_from_fork+0xf3/0x1b0
ret_from_fork_asm+0x1a/0x30
</TASK>
That can be reproduced by:
veritysetup format --data-block-size=4096 --hash-block-size=4096 /dev/vda /dev/vdb
SIZE=$(blockdev --getsz /dev/vda)
dmsetup create myverity -r --table "0 $SIZE verity 1 /dev/vda /dev/vdb 4096 4096 <data_blocks> 1 sha256 <root_hash> <salt> 1 try_verify_in_tasklet"
mount /dev/dm-0 /mnt -o ro
echo 102400 > /sys/module/dm_bufio/parameters/max_cache_size_bytes
[read files in /mnt] |
In the Linux kernel, the following vulnerability has been resolved:
tracing/osnoise: Fix crash in timerlat_dump_stack()
We have observed kernel panics when using timerlat with stack saving,
with the following dmesg output:
memcpy: detected buffer overflow: 88 byte write of buffer size 0
WARNING: CPU: 2 PID: 8153 at lib/string_helpers.c:1032 __fortify_report+0x55/0xa0
CPU: 2 UID: 0 PID: 8153 Comm: timerlatu/2 Kdump: loaded Not tainted 6.15.3-200.fc42.x86_64 #1 PREEMPT(lazy)
Call Trace:
<TASK>
? trace_buffer_lock_reserve+0x2a/0x60
__fortify_panic+0xd/0xf
__timerlat_dump_stack.cold+0xd/0xd
timerlat_dump_stack.part.0+0x47/0x80
timerlat_fd_read+0x36d/0x390
vfs_read+0xe2/0x390
? syscall_exit_to_user_mode+0x1d5/0x210
ksys_read+0x73/0xe0
do_syscall_64+0x7b/0x160
? exc_page_fault+0x7e/0x1a0
entry_SYSCALL_64_after_hwframe+0x76/0x7e
__timerlat_dump_stack() constructs the ftrace stack entry like this:
struct stack_entry *entry;
...
memcpy(&entry->caller, fstack->calls, size);
entry->size = fstack->nr_entries;
Since commit e7186af7fb26 ("tracing: Add back FORTIFY_SOURCE logic to
kernel_stack event structure"), struct stack_entry marks its caller
field with __counted_by(size). At the time of the memcpy, entry->size
contains garbage from the ringbuffer, which under some circumstances is
zero, triggering a kernel panic by buffer overflow.
Populate the size field before the memcpy so that the out-of-bounds
check knows the correct size. This is analogous to
__ftrace_trace_stack(). |
In the Linux kernel, the following vulnerability has been resolved:
netfs: Fix race between cache write completion and ALL_QUEUED being set
When netfslib is issuing subrequests, the subrequests start processing
immediately and may complete before we reach the end of the issuing
function. At the end of the issuing function we set NETFS_RREQ_ALL_QUEUED
to indicate to the collector that we aren't going to issue any more subreqs
and that it can do the final notifications and cleanup.
Now, this isn't a problem if the request is synchronous
(NETFS_RREQ_OFFLOAD_COLLECTION is unset) as the result collection will be
done in-thread and we're guaranteed an opportunity to run the collector.
However, if the request is asynchronous, collection is primarily triggered
by the termination of subrequests queuing it on a workqueue. Now, a race
can occur here if the app thread sets ALL_QUEUED after the last subrequest
terminates.
This can happen most easily with the copy2cache code (as used by Ceph)
where, in the collection routine of a read request, an asynchronous write
request is spawned to copy data to the cache. Folios are added to the
write request as they're unlocked, but there may be a delay before
ALL_QUEUED is set as the write subrequests may complete before we get
there.
If all the write subreqs have finished by the ALL_QUEUED point, no further
events happen and the collection never happens, leaving the request
hanging.
Fix this by queuing the collector after setting ALL_QUEUED. This is a bit
heavy-handed and it may be sufficient to do it only if there are no extant
subreqs.
Also add a tracepoint to cross-reference both requests in a copy-to-request
operation and add a trace to the netfs_rreq tracepoint to indicate the
setting of ALL_QUEUED. |
In the Linux kernel, the following vulnerability has been resolved:
net: libwx: remove duplicate page_pool_put_full_page()
page_pool_put_full_page() should only be invoked when freeing Rx buffers
or building a skb if the size is too short. At other times, the pages
need to be reused. So remove the redundant page put. In the original
code, double free pages cause kernel panic:
[ 876.949834] __irq_exit_rcu+0xc7/0x130
[ 876.949836] common_interrupt+0xb8/0xd0
[ 876.949838] </IRQ>
[ 876.949838] <TASK>
[ 876.949840] asm_common_interrupt+0x22/0x40
[ 876.949841] RIP: 0010:cpuidle_enter_state+0xc2/0x420
[ 876.949843] Code: 00 00 e8 d1 1d 5e ff e8 ac f0 ff ff 49 89 c5 0f 1f 44 00 00 31 ff e8 cd fc 5c ff 45 84 ff 0f 85 40 02 00 00 fb 0f 1f 44 00 00 <45> 85 f6 0f 88 84 01 00 00 49 63 d6 48 8d 04 52 48 8d 04 82 49 8d
[ 876.949844] RSP: 0018:ffffaa7340267e78 EFLAGS: 00000246
[ 876.949845] RAX: ffff9e3f135be000 RBX: 0000000000000002 RCX: 0000000000000000
[ 876.949846] RDX: 000000cc2dc4cb7c RSI: ffffffff89ee49ae RDI: ffffffff89ef9f9e
[ 876.949847] RBP: ffff9e378f940800 R08: 0000000000000002 R09: 00000000000000ed
[ 876.949848] R10: 000000000000afc8 R11: ffff9e3e9e5a9b6c R12: ffffffff8a6d8580
[ 876.949849] R13: 000000cc2dc4cb7c R14: 0000000000000002 R15: 0000000000000000
[ 876.949852] ? cpuidle_enter_state+0xb3/0x420
[ 876.949855] cpuidle_enter+0x29/0x40
[ 876.949857] cpuidle_idle_call+0xfd/0x170
[ 876.949859] do_idle+0x7a/0xc0
[ 876.949861] cpu_startup_entry+0x25/0x30
[ 876.949862] start_secondary+0x117/0x140
[ 876.949864] common_startup_64+0x13e/0x148
[ 876.949867] </TASK>
[ 876.949868] ---[ end trace 0000000000000000 ]---
[ 876.949869] ------------[ cut here ]------------
[ 876.949870] list_del corruption, ffffead40445a348->next is NULL
[ 876.949873] WARNING: CPU: 14 PID: 0 at lib/list_debug.c:52 __list_del_entry_valid_or_report+0x67/0x120
[ 876.949875] Modules linked in: snd_hrtimer(E) bnep(E) binfmt_misc(E) amdgpu(E) squashfs(E) vfat(E) loop(E) fat(E) amd_atl(E) snd_hda_codec_realtek(E) intel_rapl_msr(E) snd_hda_codec_generic(E) intel_rapl_common(E) snd_hda_scodec_component(E) snd_hda_codec_hdmi(E) snd_hda_intel(E) edac_mce_amd(E) snd_intel_dspcfg(E) snd_hda_codec(E) snd_hda_core(E) amdxcp(E) kvm_amd(E) snd_hwdep(E) gpu_sched(E) drm_panel_backlight_quirks(E) cec(E) snd_pcm(E) drm_buddy(E) snd_seq_dummy(E) drm_ttm_helper(E) btusb(E) kvm(E) snd_seq_oss(E) btrtl(E) ttm(E) btintel(E) snd_seq_midi(E) btbcm(E) drm_exec(E) snd_seq_midi_event(E) i2c_algo_bit(E) snd_rawmidi(E) bluetooth(E) drm_suballoc_helper(E) irqbypass(E) snd_seq(E) ghash_clmulni_intel(E) sha512_ssse3(E) drm_display_helper(E) aesni_intel(E) snd_seq_device(E) rfkill(E) snd_timer(E) gf128mul(E) drm_client_lib(E) drm_kms_helper(E) snd(E) i2c_piix4(E) joydev(E) soundcore(E) wmi_bmof(E) ccp(E) k10temp(E) i2c_smbus(E) gpio_amdpt(E) i2c_designware_platform(E) gpio_generic(E) sg(E)
[ 876.949914] i2c_designware_core(E) sch_fq_codel(E) parport_pc(E) drm(E) ppdev(E) lp(E) parport(E) fuse(E) nfnetlink(E) ip_tables(E) ext4 crc16 mbcache jbd2 sd_mod sfp mdio_i2c i2c_core txgbe ahci ngbe pcs_xpcs libahci libwx r8169 phylink libata realtek ptp pps_core video wmi
[ 876.949933] CPU: 14 UID: 0 PID: 0 Comm: swapper/14 Kdump: loaded Tainted: G W E 6.16.0-rc2+ #20 PREEMPT(voluntary)
[ 876.949935] Tainted: [W]=WARN, [E]=UNSIGNED_MODULE
[ 876.949936] Hardware name: Micro-Star International Co., Ltd. MS-7E16/X670E GAMING PLUS WIFI (MS-7E16), BIOS 1.90 12/31/2024
[ 876.949936] RIP: 0010:__list_del_entry_valid_or_report+0x67/0x120
[ 876.949938] Code: 00 00 00 48 39 7d 08 0f 85 a6 00 00 00 5b b8 01 00 00 00 5d 41 5c e9 73 0d 93 ff 48 89 fe 48 c7 c7 a0 31 e8 89 e8 59 7c b3 ff <0f> 0b 31 c0 5b 5d 41 5c e9 57 0d 93 ff 48 89 fe 48 c7 c7 c8 31 e8
[ 876.949940] RSP: 0018:ffffaa73405d0c60 EFLAGS: 00010282
[ 876.949941] RAX: 0000000000000000 RBX: ffffead40445a348 RCX: 0000000000000000
[ 876.949942] RDX: 0000000000000105 RSI: 00000
---truncated--- |
In the Linux kernel, the following vulnerability has been resolved:
s390/bpf: Fix bpf_arch_text_poke() with new_addr == NULL again
Commit 7ded842b356d ("s390/bpf: Fix bpf_plt pointer arithmetic") has
accidentally removed the critical piece of commit c730fce7c70c
("s390/bpf: Fix bpf_arch_text_poke() with new_addr == NULL"), causing
intermittent kernel panics in e.g. perf's on_switch() prog to reappear.
Restore the fix and add a comment. |
In the Linux kernel, the following vulnerability has been resolved:
soundwire: Revert "soundwire: qcom: Add set_channel_map api support"
This reverts commit 7796c97df6b1b2206681a07f3c80f6023a6593d5.
This patch broke Dragonboard 845c (sdm845). I see:
Unexpected kernel BRK exception at EL1
Internal error: BRK handler: 00000000f20003e8 [#1] SMP
pc : qcom_swrm_set_channel_map+0x7c/0x80 [soundwire_qcom]
lr : snd_soc_dai_set_channel_map+0x34/0x78
Call trace:
qcom_swrm_set_channel_map+0x7c/0x80 [soundwire_qcom] (P)
sdm845_dai_init+0x18c/0x2e0 [snd_soc_sdm845]
snd_soc_link_init+0x28/0x6c
snd_soc_bind_card+0x5f4/0xb0c
snd_soc_register_card+0x148/0x1a4
devm_snd_soc_register_card+0x50/0xb0
sdm845_snd_platform_probe+0x124/0x148 [snd_soc_sdm845]
platform_probe+0x6c/0xd0
really_probe+0xc0/0x2a4
__driver_probe_device+0x7c/0x130
driver_probe_device+0x40/0x118
__device_attach_driver+0xc4/0x108
bus_for_each_drv+0x8c/0xf0
__device_attach+0xa4/0x198
device_initial_probe+0x18/0x28
bus_probe_device+0xb8/0xbc
deferred_probe_work_func+0xac/0xfc
process_one_work+0x244/0x658
worker_thread+0x1b4/0x360
kthread+0x148/0x228
ret_from_fork+0x10/0x20
Kernel panic - not syncing: BRK handler: Fatal exception
Dan has also reported following issues with the original patch
https://lore.kernel.org/all/33fe8fe7-719a-405a-9ed2-d9f816ce1d57@sabinyo.mountain/
Bug #1:
The zeroeth element of ctrl->pconfig[] is supposed to be unused. We
start counting at 1. However this code sets ctrl->pconfig[0].ch_mask = 128.
Bug #2:
There are SLIM_MAX_TX_PORTS (16) elements in tx_ch[] array but only
QCOM_SDW_MAX_PORTS + 1 (15) in the ctrl->pconfig[] array so it corrupts
memory like Yongqin Liu pointed out.
Bug 3:
Like Jie Gan pointed out, it erases all the tx information with the rx
information. |