| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| There is a stored Cross-site Scripting vulnerability in Esri Portal for ArcGIS versions 11.2 and below that may allow a remote, authenticated attacker to create a crafted link that can be saved as a new location when moving an existing item which will potentially execute arbitrary JavaScript code in the victim’s browser. The privileges required to execute this attack are high. |
| There is a cross site scripting vulnerability in the Esri Portal for ArcGIS Experience Builder 11.1 and below on Windows and Linux that allows a remote, unauthenticated attacker to create a crafted link which when clicked could potentially execute arbitrary JavaScript code in the victim’s browser. The privileges required to execute this attack are low. |
| In the Linux kernel, the following vulnerability has been resolved:
usb: xhci: Check for xhci->interrupters being allocated in xhci_mem_clearup()
If xhci_mem_init() fails, it calls into xhci_mem_cleanup() to mop
up the damage. If it fails early enough, before xhci->interrupters
is allocated but after xhci->max_interrupters has been set, which
happens in most (all?) cases, things get uglier, as xhci_mem_cleanup()
unconditionally derefences xhci->interrupters. With prejudice.
Gate the interrupt freeing loop with a check on xhci->interrupters
being non-NULL.
Found while debugging a DMA allocation issue that led the XHCI driver
on this exact path. |
| An out-of-bounds memory write flaw was found in the Linux kernel’s Kid-friendly Wired Controller driver. This flaw allows a local user to crash or potentially escalate their privileges on the system. It is in bigben_probe of drivers/hid/hid-bigbenff.c. The reason is incorrect assumption - bigben devices all have inputs. However, malicious devices can break this assumption, leaking to out-of-bound write. |
| In the Linux kernel, the following vulnerability has been resolved:
vt: prevent kernel-infoleak in con_font_get()
font.data may not initialize all memory spaces depending on the implementation
of vc->vc_sw->con_font_get. This may cause info-leak, so to prevent this, it
is safest to modify it to initialize the allocated memory space to 0, and it
generally does not affect the overall performance of the system. |
| In the Linux kernel before 6.6.7, an untrusted VMM can trigger int80 syscall handling at any given point. This is related to arch/x86/coco/tdx/tdx.c and arch/x86/mm/mem_encrypt_amd.c. |
| A memory leak flaw was found in the UBI driver in drivers/mtd/ubi/attach.c in the Linux kernel through 6.7.4 for UBI_IOCATT, because kobj->name is not released. |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: HCI: Fix potential null-ptr-deref
Fix potential null-ptr-deref in hci_le_big_sync_established_evt(). |
| In the Linux kernel, the following vulnerability has been resolved:
af_unix: Call kfree_skb() for dead unix_(sk)->oob_skb in GC.
syzbot reported a warning [0] in __unix_gc() with a repro, which
creates a socketpair and sends one socket's fd to itself using the
peer.
socketpair(AF_UNIX, SOCK_STREAM, 0, [3, 4]) = 0
sendmsg(4, {msg_name=NULL, msg_namelen=0, msg_iov=[{iov_base="\360", iov_len=1}],
msg_iovlen=1, msg_control=[{cmsg_len=20, cmsg_level=SOL_SOCKET,
cmsg_type=SCM_RIGHTS, cmsg_data=[3]}],
msg_controllen=24, msg_flags=0}, MSG_OOB|MSG_PROBE|MSG_DONTWAIT|MSG_ZEROCOPY) = 1
This forms a self-cyclic reference that GC should finally untangle
but does not due to lack of MSG_OOB handling, resulting in memory
leak.
Recently, commit 11498715f266 ("af_unix: Remove io_uring code for
GC.") removed io_uring's dead code in GC and revealed the problem.
The code was executed at the final stage of GC and unconditionally
moved all GC candidates from gc_candidates to gc_inflight_list.
That papered over the reported problem by always making the following
WARN_ON_ONCE(!list_empty(&gc_candidates)) false.
The problem has been there since commit 2aab4b969002 ("af_unix: fix
struct pid leaks in OOB support") added full scm support for MSG_OOB
while fixing another bug.
To fix this problem, we must call kfree_skb() for unix_sk(sk)->oob_skb
if the socket still exists in gc_candidates after purging collected skb.
Then, we need to set NULL to oob_skb before calling kfree_skb() because
it calls last fput() and triggers unix_release_sock(), where we call
duplicate kfree_skb(u->oob_skb) if not NULL.
Note that the leaked socket remained being linked to a global list, so
kmemleak also could not detect it. We need to check /proc/net/protocol
to notice the unfreed socket.
[0]:
WARNING: CPU: 0 PID: 2863 at net/unix/garbage.c:345 __unix_gc+0xc74/0xe80 net/unix/garbage.c:345
Modules linked in:
CPU: 0 PID: 2863 Comm: kworker/u4:11 Not tainted 6.8.0-rc1-syzkaller-00583-g1701940b1a02 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/25/2024
Workqueue: events_unbound __unix_gc
RIP: 0010:__unix_gc+0xc74/0xe80 net/unix/garbage.c:345
Code: 8b 5c 24 50 e9 86 f8 ff ff e8 f8 e4 22 f8 31 d2 48 c7 c6 30 6a 69 89 4c 89 ef e8 97 ef ff ff e9 80 f9 ff ff e8 dd e4 22 f8 90 <0f> 0b 90 e9 7b fd ff ff 48 89 df e8 5c e7 7c f8 e9 d3 f8 ff ff e8
RSP: 0018:ffffc9000b03fba0 EFLAGS: 00010293
RAX: 0000000000000000 RBX: ffffc9000b03fc10 RCX: ffffffff816c493e
RDX: ffff88802c02d940 RSI: ffffffff896982f3 RDI: ffffc9000b03fb30
RBP: ffffc9000b03fce0 R08: 0000000000000001 R09: fffff52001607f66
R10: 0000000000000003 R11: 0000000000000002 R12: dffffc0000000000
R13: ffffc9000b03fc10 R14: ffffc9000b03fc10 R15: 0000000000000001
FS: 0000000000000000(0000) GS:ffff8880b9400000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00005559c8677a60 CR3: 000000000d57a000 CR4: 00000000003506f0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
process_one_work+0x889/0x15e0 kernel/workqueue.c:2633
process_scheduled_works kernel/workqueue.c:2706 [inline]
worker_thread+0x8b9/0x12a0 kernel/workqueue.c:2787
kthread+0x2c6/0x3b0 kernel/kthread.c:388
ret_from_fork+0x45/0x80 arch/x86/kernel/process.c:147
ret_from_fork_asm+0x1b/0x30 arch/x86/entry/entry_64.S:242
</TASK> |
| In the Linux kernel, the following vulnerability has been resolved:
md/raid1: properly indicate failure when ending a failed write request
This patch addresses a data corruption bug in raid1 arrays using bitmaps.
Without this fix, the bitmap bits for the failed I/O end up being cleared.
Since we are in the failure leg of raid1_end_write_request, the request
either needs to be retried (R1BIO_WriteError) or failed (R1BIO_Degraded). |
| In the Linux kernel, the following vulnerability has been resolved:
ceph: fix inode leak on getattr error in __fh_to_dentry |
| In the Linux kernel, the following vulnerability has been resolved:
mm: migrate: fix getting incorrect page mapping during page migration
When running stress-ng testing, we found below kernel crash after a few hours:
Unable to handle kernel NULL pointer dereference at virtual address 0000000000000000
pc : dentry_name+0xd8/0x224
lr : pointer+0x22c/0x370
sp : ffff800025f134c0
......
Call trace:
dentry_name+0xd8/0x224
pointer+0x22c/0x370
vsnprintf+0x1ec/0x730
vscnprintf+0x2c/0x60
vprintk_store+0x70/0x234
vprintk_emit+0xe0/0x24c
vprintk_default+0x3c/0x44
vprintk_func+0x84/0x2d0
printk+0x64/0x88
__dump_page+0x52c/0x530
dump_page+0x14/0x20
set_migratetype_isolate+0x110/0x224
start_isolate_page_range+0xc4/0x20c
offline_pages+0x124/0x474
memory_block_offline+0x44/0xf4
memory_subsys_offline+0x3c/0x70
device_offline+0xf0/0x120
......
After analyzing the vmcore, I found this issue is caused by page migration.
The scenario is that, one thread is doing page migration, and we will use the
target page's ->mapping field to save 'anon_vma' pointer between page unmap and
page move, and now the target page is locked and refcount is 1.
Currently, there is another stress-ng thread performing memory hotplug,
attempting to offline the target page that is being migrated. It discovers that
the refcount of this target page is 1, preventing the offline operation, thus
proceeding to dump the page. However, page_mapping() of the target page may
return an incorrect file mapping to crash the system in dump_mapping(), since
the target page->mapping only saves 'anon_vma' pointer without setting
PAGE_MAPPING_ANON flag.
There are seveval ways to fix this issue:
(1) Setting the PAGE_MAPPING_ANON flag for target page's ->mapping when saving
'anon_vma', but this can confuse PageAnon() for PFN walkers, since the target
page has not built mappings yet.
(2) Getting the page lock to call page_mapping() in __dump_page() to avoid crashing
the system, however, there are still some PFN walkers that call page_mapping()
without holding the page lock, such as compaction.
(3) Using target page->private field to save the 'anon_vma' pointer and 2 bits
page state, just as page->mapping records an anonymous page, which can remove
the page_mapping() impact for PFN walkers and also seems a simple way.
So I choose option 3 to fix this issue, and this can also fix other potential
issues for PFN walkers, such as compaction. |
| In the Linux kernel, the following vulnerability has been resolved:
HID: sony: Fix a potential memory leak in sony_probe()
If an error occurs after a successful usb_alloc_urb() call, usb_free_urb()
should be called. |
| In the Linux kernel, the following vulnerability has been resolved:
powerpc/kasan: Fix addr error caused by page alignment
In kasan_init_region, when k_start is not page aligned, at the begin of
for loop, k_cur = k_start & PAGE_MASK is less than k_start, and then
`va = block + k_cur - k_start` is less than block, the addr va is invalid,
because the memory address space from va to block is not alloced by
memblock_alloc, which will not be reserved by memblock_reserve later, it
will be used by other places.
As a result, memory overwriting occurs.
for example:
int __init __weak kasan_init_region(void *start, size_t size)
{
[...]
/* if say block(dcd97000) k_start(feef7400) k_end(feeff3fe) */
block = memblock_alloc(k_end - k_start, PAGE_SIZE);
[...]
for (k_cur = k_start & PAGE_MASK; k_cur < k_end; k_cur += PAGE_SIZE) {
/* at the begin of for loop
* block(dcd97000) va(dcd96c00) k_cur(feef7000) k_start(feef7400)
* va(dcd96c00) is less than block(dcd97000), va is invalid
*/
void *va = block + k_cur - k_start;
[...]
}
[...]
}
Therefore, page alignment is performed on k_start before
memblock_alloc() to ensure the validity of the VA address. |
| In the Linux kernel, the following vulnerability has been resolved:
usb: roles: fix NULL pointer issue when put module's reference
In current design, usb role class driver will get usb_role_switch parent's
module reference after the user get usb_role_switch device and put the
reference after the user put the usb_role_switch device. However, the
parent device of usb_role_switch may be removed before the user put the
usb_role_switch. If so, then, NULL pointer issue will be met when the user
put the parent module's reference.
This will save the module pointer in structure of usb_role_switch. Then,
we don't need to find module by iterating long relations. |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: hci_core: Fix possible buffer overflow
struct hci_dev_info has a fixed size name[8] field so in the event that
hdev->name is bigger than that strcpy would attempt to write past its
size, so this fixes this problem by switching to use strscpy. |
| In the Linux kernel, the following vulnerability has been resolved:
erspan: make sure erspan_base_hdr is present in skb->head
syzbot reported a problem in ip6erspan_rcv() [1]
Issue is that ip6erspan_rcv() (and erspan_rcv()) no longer make
sure erspan_base_hdr is present in skb linear part (skb->head)
before getting @ver field from it.
Add the missing pskb_may_pull() calls.
v2: Reload iph pointer in erspan_rcv() after pskb_may_pull()
because skb->head might have changed.
[1]
BUG: KMSAN: uninit-value in pskb_may_pull_reason include/linux/skbuff.h:2742 [inline]
BUG: KMSAN: uninit-value in pskb_may_pull include/linux/skbuff.h:2756 [inline]
BUG: KMSAN: uninit-value in ip6erspan_rcv net/ipv6/ip6_gre.c:541 [inline]
BUG: KMSAN: uninit-value in gre_rcv+0x11f8/0x1930 net/ipv6/ip6_gre.c:610
pskb_may_pull_reason include/linux/skbuff.h:2742 [inline]
pskb_may_pull include/linux/skbuff.h:2756 [inline]
ip6erspan_rcv net/ipv6/ip6_gre.c:541 [inline]
gre_rcv+0x11f8/0x1930 net/ipv6/ip6_gre.c:610
ip6_protocol_deliver_rcu+0x1d4c/0x2ca0 net/ipv6/ip6_input.c:438
ip6_input_finish net/ipv6/ip6_input.c:483 [inline]
NF_HOOK include/linux/netfilter.h:314 [inline]
ip6_input+0x15d/0x430 net/ipv6/ip6_input.c:492
ip6_mc_input+0xa7e/0xc80 net/ipv6/ip6_input.c:586
dst_input include/net/dst.h:460 [inline]
ip6_rcv_finish+0x955/0x970 net/ipv6/ip6_input.c:79
NF_HOOK include/linux/netfilter.h:314 [inline]
ipv6_rcv+0xde/0x390 net/ipv6/ip6_input.c:310
__netif_receive_skb_one_core net/core/dev.c:5538 [inline]
__netif_receive_skb+0x1da/0xa00 net/core/dev.c:5652
netif_receive_skb_internal net/core/dev.c:5738 [inline]
netif_receive_skb+0x58/0x660 net/core/dev.c:5798
tun_rx_batched+0x3ee/0x980 drivers/net/tun.c:1549
tun_get_user+0x5566/0x69e0 drivers/net/tun.c:2002
tun_chr_write_iter+0x3af/0x5d0 drivers/net/tun.c:2048
call_write_iter include/linux/fs.h:2108 [inline]
new_sync_write fs/read_write.c:497 [inline]
vfs_write+0xb63/0x1520 fs/read_write.c:590
ksys_write+0x20f/0x4c0 fs/read_write.c:643
__do_sys_write fs/read_write.c:655 [inline]
__se_sys_write fs/read_write.c:652 [inline]
__x64_sys_write+0x93/0xe0 fs/read_write.c:652
do_syscall_64+0xd5/0x1f0
entry_SYSCALL_64_after_hwframe+0x6d/0x75
Uninit was created at:
slab_post_alloc_hook mm/slub.c:3804 [inline]
slab_alloc_node mm/slub.c:3845 [inline]
kmem_cache_alloc_node+0x613/0xc50 mm/slub.c:3888
kmalloc_reserve+0x13d/0x4a0 net/core/skbuff.c:577
__alloc_skb+0x35b/0x7a0 net/core/skbuff.c:668
alloc_skb include/linux/skbuff.h:1318 [inline]
alloc_skb_with_frags+0xc8/0xbf0 net/core/skbuff.c:6504
sock_alloc_send_pskb+0xa81/0xbf0 net/core/sock.c:2795
tun_alloc_skb drivers/net/tun.c:1525 [inline]
tun_get_user+0x209a/0x69e0 drivers/net/tun.c:1846
tun_chr_write_iter+0x3af/0x5d0 drivers/net/tun.c:2048
call_write_iter include/linux/fs.h:2108 [inline]
new_sync_write fs/read_write.c:497 [inline]
vfs_write+0xb63/0x1520 fs/read_write.c:590
ksys_write+0x20f/0x4c0 fs/read_write.c:643
__do_sys_write fs/read_write.c:655 [inline]
__se_sys_write fs/read_write.c:652 [inline]
__x64_sys_write+0x93/0xe0 fs/read_write.c:652
do_syscall_64+0xd5/0x1f0
entry_SYSCALL_64_after_hwframe+0x6d/0x75
CPU: 1 PID: 5045 Comm: syz-executor114 Not tainted 6.9.0-rc1-syzkaller-00021-g962490525cff #0 |
| In the Linux kernel, the following vulnerability has been resolved:
net: ipv4: fix memory leak in ip_mc_add1_src
BUG: memory leak
unreferenced object 0xffff888101bc4c00 (size 32):
comm "syz-executor527", pid 360, jiffies 4294807421 (age 19.329s)
hex dump (first 32 bytes):
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
01 00 00 00 00 00 00 00 ac 14 14 bb 00 00 02 00 ................
backtrace:
[<00000000f17c5244>] kmalloc include/linux/slab.h:558 [inline]
[<00000000f17c5244>] kzalloc include/linux/slab.h:688 [inline]
[<00000000f17c5244>] ip_mc_add1_src net/ipv4/igmp.c:1971 [inline]
[<00000000f17c5244>] ip_mc_add_src+0x95f/0xdb0 net/ipv4/igmp.c:2095
[<000000001cb99709>] ip_mc_source+0x84c/0xea0 net/ipv4/igmp.c:2416
[<0000000052cf19ed>] do_ip_setsockopt net/ipv4/ip_sockglue.c:1294 [inline]
[<0000000052cf19ed>] ip_setsockopt+0x114b/0x30c0 net/ipv4/ip_sockglue.c:1423
[<00000000477edfbc>] raw_setsockopt+0x13d/0x170 net/ipv4/raw.c:857
[<00000000e75ca9bb>] __sys_setsockopt+0x158/0x270 net/socket.c:2117
[<00000000bdb993a8>] __do_sys_setsockopt net/socket.c:2128 [inline]
[<00000000bdb993a8>] __se_sys_setsockopt net/socket.c:2125 [inline]
[<00000000bdb993a8>] __x64_sys_setsockopt+0xba/0x150 net/socket.c:2125
[<000000006a1ffdbd>] do_syscall_64+0x40/0x80 arch/x86/entry/common.c:47
[<00000000b11467c4>] entry_SYSCALL_64_after_hwframe+0x44/0xae
In commit 24803f38a5c0 ("igmp: do not remove igmp souce list info when set
link down"), the ip_mc_clear_src() in ip_mc_destroy_dev() was removed,
because it was also called in igmpv3_clear_delrec().
Rough callgraph:
inetdev_destroy
-> ip_mc_destroy_dev
-> igmpv3_clear_delrec
-> ip_mc_clear_src
-> RCU_INIT_POINTER(dev->ip_ptr, NULL)
However, ip_mc_clear_src() called in igmpv3_clear_delrec() doesn't
release in_dev->mc_list->sources. And RCU_INIT_POINTER() assigns the
NULL to dev->ip_ptr. As a result, in_dev cannot be obtained through
inetdev_by_index() and then in_dev->mc_list->sources cannot be released
by ip_mc_del1_src() in the sock_close. Rough call sequence goes like:
sock_close
-> __sock_release
-> inet_release
-> ip_mc_drop_socket
-> inetdev_by_index
-> ip_mc_leave_src
-> ip_mc_del_src
-> ip_mc_del1_src
So we still need to call ip_mc_clear_src() in ip_mc_destroy_dev() to free
in_dev->mc_list->sources. |
| In the Linux kernel, the following vulnerability has been resolved:
mptcp: fix soft lookup in subflow_error_report()
Maxim reported a soft lookup in subflow_error_report():
watchdog: BUG: soft lockup - CPU#0 stuck for 22s! [swapper/0:0]
RIP: 0010:native_queued_spin_lock_slowpath
RSP: 0018:ffffa859c0003bc0 EFLAGS: 00000202
RAX: 0000000000000101 RBX: 0000000000000001 RCX: 0000000000000000
RDX: ffff9195c2772d88 RSI: 0000000000000000 RDI: ffff9195c2772d88
RBP: ffff9195c2772d00 R08: 00000000000067b0 R09: c6e31da9eb1e44f4
R10: ffff9195ef379700 R11: ffff9195edb50710 R12: ffff9195c2772d88
R13: ffff9195f500e3d0 R14: ffff9195ef379700 R15: ffff9195ef379700
FS: 0000000000000000(0000) GS:ffff91961f400000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 000000c000407000 CR3: 0000000002988000 CR4: 00000000000006f0
Call Trace:
<IRQ>
_raw_spin_lock_bh
subflow_error_report
mptcp_subflow_data_available
__mptcp_move_skbs_from_subflow
mptcp_data_ready
tcp_data_queue
tcp_rcv_established
tcp_v4_do_rcv
tcp_v4_rcv
ip_protocol_deliver_rcu
ip_local_deliver_finish
__netif_receive_skb_one_core
netif_receive_skb
rtl8139_poll 8139too
__napi_poll
net_rx_action
__do_softirq
__irq_exit_rcu
common_interrupt
</IRQ>
The calling function - mptcp_subflow_data_available() - can be invoked
from different contexts:
- plain ssk socket lock
- ssk socket lock + mptcp_data_lock
- ssk socket lock + mptcp_data_lock + msk socket lock.
Since subflow_error_report() tries to acquire the mptcp_data_lock, the
latter two call chains will cause soft lookup.
This change addresses the issue moving the error reporting call to
outer functions, where the held locks list is known and the we can
acquire only the needed one. |
| In the Linux kernel, the following vulnerability has been resolved:
s390/qeth: fix NULL deref in qeth_clear_working_pool_list()
When qeth_set_online() calls qeth_clear_working_pool_list() to roll
back after an error exit from qeth_hardsetup_card(), we are at risk of
accessing card->qdio.in_q before it was allocated by
qeth_alloc_qdio_queues() via qeth_mpc_initialize().
qeth_clear_working_pool_list() then dereferences NULL, and by writing to
queue->bufs[i].pool_entry scribbles all over the CPU's lowcore.
Resulting in a crash when those lowcore areas are used next (eg. on
the next machine-check interrupt).
Such a scenario would typically happen when the device is first set
online and its queues aren't allocated yet. An early IO error or certain
misconfigs (eg. mismatched transport mode, bad portno) then cause us to
error out from qeth_hardsetup_card() with card->qdio.in_q still being
NULL.
Fix it by checking the pointer for NULL before accessing it.
Note that we also have (rare) paths inside qeth_mpc_initialize() where
a configuration change can cause us to free the existing queues,
expecting that subsequent code will allocate them again. If we then
error out before that re-allocation happens, the same bug occurs.
Root-caused-by: Heiko Carstens <hca@linux.ibm.com> |