| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
ubi: Fix race condition between ctrl_cdev_ioctl and ubi_cdev_ioctl
Hulk Robot reported a KASAN report about use-after-free:
==================================================================
BUG: KASAN: use-after-free in __list_del_entry_valid+0x13d/0x160
Read of size 8 at addr ffff888035e37d98 by task ubiattach/1385
[...]
Call Trace:
klist_dec_and_del+0xa7/0x4a0
klist_put+0xc7/0x1a0
device_del+0x4d4/0xed0
cdev_device_del+0x1a/0x80
ubi_attach_mtd_dev+0x2951/0x34b0 [ubi]
ctrl_cdev_ioctl+0x286/0x2f0 [ubi]
Allocated by task 1414:
device_add+0x60a/0x18b0
cdev_device_add+0x103/0x170
ubi_create_volume+0x1118/0x1a10 [ubi]
ubi_cdev_ioctl+0xb7f/0x1ba0 [ubi]
Freed by task 1385:
cdev_device_del+0x1a/0x80
ubi_remove_volume+0x438/0x6c0 [ubi]
ubi_cdev_ioctl+0xbf4/0x1ba0 [ubi]
[...]
==================================================================
The lock held by ctrl_cdev_ioctl is ubi_devices_mutex, but the lock held
by ubi_cdev_ioctl is ubi->device_mutex. Therefore, the two locks can be
concurrent.
ctrl_cdev_ioctl contains two operations: ubi_attach and ubi_detach.
ubi_detach is bug-free because it uses reference counting to prevent
concurrency. However, uif_init and uif_close in ubi_attach may race with
ubi_cdev_ioctl.
uif_init will race with ubi_cdev_ioctl as in the following stack.
cpu1 cpu2 cpu3
_______________________|________________________|______________________
ctrl_cdev_ioctl
ubi_attach_mtd_dev
uif_init
ubi_cdev_ioctl
ubi_create_volume
cdev_device_add
ubi_add_volume
// sysfs exist
kill_volumes
ubi_cdev_ioctl
ubi_remove_volume
cdev_device_del
// first free
ubi_free_volume
cdev_del
// double free
cdev_device_del
And uif_close will race with ubi_cdev_ioctl as in the following stack.
cpu1 cpu2 cpu3
_______________________|________________________|______________________
ctrl_cdev_ioctl
ubi_attach_mtd_dev
uif_init
ubi_cdev_ioctl
ubi_create_volume
cdev_device_add
ubi_debugfs_init_dev
//error goto out_uif;
uif_close
kill_volumes
ubi_cdev_ioctl
ubi_remove_volume
cdev_device_del
// first free
ubi_free_volume
// double free
The cause of this problem is that commit 714fb87e8bc0 make device
"available" before it becomes accessible via sysfs. Therefore, we
roll back the modification. We will fix the race condition between
ubi device creation and udev by removing ubi_get_device in
vol_attribute_show and dev_attribute_show.This avoids accessing
uninitialized ubi_devices[ubi_num].
ubi_get_device is used to prevent devices from being deleted during
sysfs execution. However, now kernfs ensures that devices will not
be deleted before all reference counting are released.
The key process is shown in the following stack.
device_del
device_remove_attrs
device_remove_groups
sysfs_remove_groups
sysfs_remove_group
remove_files
kernfs_remove_by_name
kernfs_remove_by_name_ns
__kernfs_remove
kernfs_drain |
| In the Linux kernel, the following vulnerability has been resolved:
audit: improve robustness of the audit queue handling
If the audit daemon were ever to get stuck in a stopped state the
kernel's kauditd_thread() could get blocked attempting to send audit
records to the userspace audit daemon. With the kernel thread
blocked it is possible that the audit queue could grow unbounded as
certain audit record generating events must be exempt from the queue
limits else the system enter a deadlock state.
This patch resolves this problem by lowering the kernel thread's
socket sending timeout from MAX_SCHEDULE_TIMEOUT to HZ/10 and tweaks
the kauditd_send_queue() function to better manage the various audit
queues when connection problems occur between the kernel and the
audit daemon. With this patch, the backlog may temporarily grow
beyond the defined limits when the audit daemon is stopped and the
system is under heavy audit pressure, but kauditd_thread() will
continue to make progress and drain the queues as it would for other
connection problems. For example, with the audit daemon put into a
stopped state and the system configured to audit every syscall it
was still possible to shutdown the system without a kernel panic,
deadlock, etc.; granted, the system was slow to shutdown but that is
to be expected given the extreme pressure of recording every syscall.
The timeout value of HZ/10 was chosen primarily through
experimentation and this developer's "gut feeling". There is likely
no one perfect value, but as this scenario is limited in scope (root
privileges would be needed to send SIGSTOP to the audit daemon), it
is likely not worth exposing this as a tunable at present. This can
always be done at a later date if it proves necessary. |
| In the Linux kernel, the following vulnerability has been resolved:
ipv6: fix memory leak in fib6_rule_suppress
The kernel leaks memory when a `fib` rule is present in IPv6 nftables
firewall rules and a suppress_prefix rule is present in the IPv6 routing
rules (used by certain tools such as wg-quick). In such scenarios, every
incoming packet will leak an allocation in `ip6_dst_cache` slab cache.
After some hours of `bpftrace`-ing and source code reading, I tracked
down the issue to ca7a03c41753 ("ipv6: do not free rt if
FIB_LOOKUP_NOREF is set on suppress rule").
The problem with that change is that the generic `args->flags` always have
`FIB_LOOKUP_NOREF` set[1][2] but the IPv6-specific flag
`RT6_LOOKUP_F_DST_NOREF` might not be, leading to `fib6_rule_suppress` not
decreasing the refcount when needed.
How to reproduce:
- Add the following nftables rule to a prerouting chain:
meta nfproto ipv6 fib saddr . mark . iif oif missing drop
This can be done with:
sudo nft create table inet test
sudo nft create chain inet test test_chain '{ type filter hook prerouting priority filter + 10; policy accept; }'
sudo nft add rule inet test test_chain meta nfproto ipv6 fib saddr . mark . iif oif missing drop
- Run:
sudo ip -6 rule add table main suppress_prefixlength 0
- Watch `sudo slabtop -o | grep ip6_dst_cache` to see memory usage increase
with every incoming ipv6 packet.
This patch exposes the protocol-specific flags to the protocol
specific `suppress` function, and check the protocol-specific `flags`
argument for RT6_LOOKUP_F_DST_NOREF instead of the generic
FIB_LOOKUP_NOREF when decreasing the refcount, like this.
[1]: https://github.com/torvalds/linux/blob/ca7a03c4175366a92cee0ccc4fec0038c3266e26/net/ipv6/fib6_rules.c#L71
[2]: https://github.com/torvalds/linux/blob/ca7a03c4175366a92cee0ccc4fec0038c3266e26/net/ipv6/fib6_rules.c#L99 |
| In the Linux kernel, the following vulnerability has been resolved:
net: dsa: felix: Fix memory leak in felix_setup_mmio_filtering
Avoid a memory leak if there is not a CPU port defined.
Addresses-Coverity-ID: 1492897 ("Resource leak")
Addresses-Coverity-ID: 1492899 ("Resource leak") |
| In the Linux kernel, the following vulnerability has been resolved:
usb: musb: dsps: Fix the probe error path
Commit 7c75bde329d7 ("usb: musb: musb_dsps: request_irq() after
initializing musb") has inverted the calls to
dsps_setup_optional_vbus_irq() and dsps_create_musb_pdev() without
updating correctly the error path. dsps_create_musb_pdev() allocates and
registers a new platform device which must be unregistered and freed
with platform_device_unregister(), and this is missing upon
dsps_setup_optional_vbus_irq() error.
While on the master branch it seems not to trigger any issue, I observed
a kernel crash because of a NULL pointer dereference with a v5.10.70
stable kernel where the patch mentioned above was backported. With this
kernel version, -EPROBE_DEFER is returned the first time
dsps_setup_optional_vbus_irq() is called which triggers the probe to
error out without unregistering the platform device. Unfortunately, on
the Beagle Bone Black Wireless, the platform device still living in the
system is being used by the USB Ethernet gadget driver, which during the
boot phase triggers the crash.
My limited knowledge of the musb world prevents me to revert this commit
which was sent to silence a robot warning which, as far as I understand,
does not make sense. The goal of this patch was to prevent an IRQ to
fire before the platform device being registered. I think this cannot
ever happen due to the fact that enabling the interrupts is done by the
->enable() callback of the platform musb device, and this platform
device must be already registered in order for the core or any other
user to use this callback.
Hence, I decided to fix the error path, which might prevent future
errors on mainline kernels while also fixing older ones. |
| In the Linux kernel, the following vulnerability has been resolved:
mac80211: fix use-after-free in CCMP/GCMP RX
When PN checking is done in mac80211, for fragmentation we need
to copy the PN to the RX struct so we can later use it to do a
comparison, since commit bf30ca922a0c ("mac80211: check defrag
PN against current frame").
Unfortunately, in that commit I used the 'hdr' variable without
it being necessarily valid, so use-after-free could occur if it
was necessary to reallocate (parts of) the frame.
Fix this by reloading the variable after the code that results
in the reallocations, if any.
This fixes https://bugzilla.kernel.org/show_bug.cgi?id=214401. |
| In the Linux kernel, the following vulnerability has been resolved:
s390/qeth: fix deadlock during failing recovery
Commit 0b9902c1fcc5 ("s390/qeth: fix deadlock during recovery") removed
taking discipline_mutex inside qeth_do_reset(), fixing potential
deadlocks. An error path was missed though, that still takes
discipline_mutex and thus has the original deadlock potential.
Intermittent deadlocks were seen when a qeth channel path is configured
offline, causing a race between qeth_do_reset and ccwgroup_remove.
Call qeth_set_offline() directly in the qeth_do_reset() error case and
then a new variant of ccwgroup_set_offline(), without taking
discipline_mutex. |
| In the Linux kernel, the following vulnerability has been resolved:
KVM: mmio: Fix use-after-free Read in kvm_vm_ioctl_unregister_coalesced_mmio
BUG: KASAN: use-after-free in kvm_vm_ioctl_unregister_coalesced_mmio+0x7c/0x1ec arch/arm64/kvm/../../../virt/kvm/coalesced_mmio.c:183
Read of size 8 at addr ffff0000c03a2500 by task syz-executor083/4269
CPU: 5 PID: 4269 Comm: syz-executor083 Not tainted 5.10.0 #7
Hardware name: linux,dummy-virt (DT)
Call trace:
dump_backtrace+0x0/0x2d0 arch/arm64/kernel/stacktrace.c:132
show_stack+0x28/0x34 arch/arm64/kernel/stacktrace.c:196
__dump_stack lib/dump_stack.c:77 [inline]
dump_stack+0x110/0x164 lib/dump_stack.c:118
print_address_description+0x78/0x5c8 mm/kasan/report.c:385
__kasan_report mm/kasan/report.c:545 [inline]
kasan_report+0x148/0x1e4 mm/kasan/report.c:562
check_memory_region_inline mm/kasan/generic.c:183 [inline]
__asan_load8+0xb4/0xbc mm/kasan/generic.c:252
kvm_vm_ioctl_unregister_coalesced_mmio+0x7c/0x1ec arch/arm64/kvm/../../../virt/kvm/coalesced_mmio.c:183
kvm_vm_ioctl+0xe30/0x14c4 arch/arm64/kvm/../../../virt/kvm/kvm_main.c:3755
vfs_ioctl fs/ioctl.c:48 [inline]
__do_sys_ioctl fs/ioctl.c:753 [inline]
__se_sys_ioctl fs/ioctl.c:739 [inline]
__arm64_sys_ioctl+0xf88/0x131c fs/ioctl.c:739
__invoke_syscall arch/arm64/kernel/syscall.c:36 [inline]
invoke_syscall arch/arm64/kernel/syscall.c:48 [inline]
el0_svc_common arch/arm64/kernel/syscall.c:158 [inline]
do_el0_svc+0x120/0x290 arch/arm64/kernel/syscall.c:220
el0_svc+0x1c/0x28 arch/arm64/kernel/entry-common.c:367
el0_sync_handler+0x98/0x170 arch/arm64/kernel/entry-common.c:383
el0_sync+0x140/0x180 arch/arm64/kernel/entry.S:670
Allocated by task 4269:
stack_trace_save+0x80/0xb8 kernel/stacktrace.c:121
kasan_save_stack mm/kasan/common.c:48 [inline]
kasan_set_track mm/kasan/common.c:56 [inline]
__kasan_kmalloc+0xdc/0x120 mm/kasan/common.c:461
kasan_kmalloc+0xc/0x14 mm/kasan/common.c:475
kmem_cache_alloc_trace include/linux/slab.h:450 [inline]
kmalloc include/linux/slab.h:552 [inline]
kzalloc include/linux/slab.h:664 [inline]
kvm_vm_ioctl_register_coalesced_mmio+0x78/0x1cc arch/arm64/kvm/../../../virt/kvm/coalesced_mmio.c:146
kvm_vm_ioctl+0x7e8/0x14c4 arch/arm64/kvm/../../../virt/kvm/kvm_main.c:3746
vfs_ioctl fs/ioctl.c:48 [inline]
__do_sys_ioctl fs/ioctl.c:753 [inline]
__se_sys_ioctl fs/ioctl.c:739 [inline]
__arm64_sys_ioctl+0xf88/0x131c fs/ioctl.c:739
__invoke_syscall arch/arm64/kernel/syscall.c:36 [inline]
invoke_syscall arch/arm64/kernel/syscall.c:48 [inline]
el0_svc_common arch/arm64/kernel/syscall.c:158 [inline]
do_el0_svc+0x120/0x290 arch/arm64/kernel/syscall.c:220
el0_svc+0x1c/0x28 arch/arm64/kernel/entry-common.c:367
el0_sync_handler+0x98/0x170 arch/arm64/kernel/entry-common.c:383
el0_sync+0x140/0x180 arch/arm64/kernel/entry.S:670
Freed by task 4269:
stack_trace_save+0x80/0xb8 kernel/stacktrace.c:121
kasan_save_stack mm/kasan/common.c:48 [inline]
kasan_set_track+0x38/0x6c mm/kasan/common.c:56
kasan_set_free_info+0x20/0x40 mm/kasan/generic.c:355
__kasan_slab_free+0x124/0x150 mm/kasan/common.c:422
kasan_slab_free+0x10/0x1c mm/kasan/common.c:431
slab_free_hook mm/slub.c:1544 [inline]
slab_free_freelist_hook mm/slub.c:1577 [inline]
slab_free mm/slub.c:3142 [inline]
kfree+0x104/0x38c mm/slub.c:4124
coalesced_mmio_destructor+0x94/0xa4 arch/arm64/kvm/../../../virt/kvm/coalesced_mmio.c:102
kvm_iodevice_destructor include/kvm/iodev.h:61 [inline]
kvm_io_bus_unregister_dev+0x248/0x280 arch/arm64/kvm/../../../virt/kvm/kvm_main.c:4374
kvm_vm_ioctl_unregister_coalesced_mmio+0x158/0x1ec arch/arm64/kvm/../../../virt/kvm/coalesced_mmio.c:186
kvm_vm_ioctl+0xe30/0x14c4 arch/arm64/kvm/../../../virt/kvm/kvm_main.c:3755
vfs_ioctl fs/ioctl.c:48 [inline]
__do_sys_ioctl fs/ioctl.c:753 [inline]
__se_sys_ioctl fs/ioctl.c:739 [inline]
__arm64_sys_ioctl+0xf88/0x131c fs/ioctl.c:739
__invoke_syscall arch/arm64/kernel/syscall.c:36 [inline]
invoke_syscall arch/arm64/kernel/sys
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
RDMA/ipoib: Fix warning caused by destroying non-initial netns
After the commit 5ce2dced8e95 ("RDMA/ipoib: Set rtnl_link_ops for ipoib
interfaces"), if the IPoIB device is moved to non-initial netns,
destroying that netns lets the device vanish instead of moving it back to
the initial netns, This is happening because default_device_exit() skips
the interfaces due to having rtnl_link_ops set.
Steps to reporoduce:
ip netns add foo
ip link set mlx5_ib0 netns foo
ip netns delete foo
WARNING: CPU: 1 PID: 704 at net/core/dev.c:11435 netdev_exit+0x3f/0x50
Modules linked in: xt_CHECKSUM xt_MASQUERADE xt_conntrack ipt_REJECT
nf_reject_ipv4 nft_compat nft_counter nft_chain_nat nf_nat nf_conntrack
nf_defrag_ipv6 nf_defrag_ipv4 nf_tables nfnetlink tun d
fuse
CPU: 1 PID: 704 Comm: kworker/u64:3 Tainted: G S W 5.13.0-rc1+ #1
Hardware name: Dell Inc. PowerEdge R630/02C2CP, BIOS 2.1.5 04/11/2016
Workqueue: netns cleanup_net
RIP: 0010:netdev_exit+0x3f/0x50
Code: 48 8b bb 30 01 00 00 e8 ef 81 b1 ff 48 81 fb c0 3a 54 a1 74 13 48
8b 83 90 00 00 00 48 81 c3 90 00 00 00 48 39 d8 75 02 5b c3 <0f> 0b 5b
c3 66 66 2e 0f 1f 84 00 00 00 00 00 66 90 0f 1f 44 00
RSP: 0018:ffffb297079d7e08 EFLAGS: 00010206
RAX: ffff8eb542c00040 RBX: ffff8eb541333150 RCX: 000000008010000d
RDX: 000000008010000e RSI: 000000008010000d RDI: ffff8eb440042c00
RBP: ffffb297079d7e48 R08: 0000000000000001 R09: ffffffff9fdeac00
R10: ffff8eb5003be000 R11: 0000000000000001 R12: ffffffffa1545620
R13: ffffffffa1545628 R14: 0000000000000000 R15: ffffffffa1543b20
FS: 0000000000000000(0000) GS:ffff8ed37fa00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00005601b5f4c2e8 CR3: 0000001fc8c10002 CR4: 00000000003706e0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
ops_exit_list.isra.9+0x36/0x70
cleanup_net+0x234/0x390
process_one_work+0x1cb/0x360
? process_one_work+0x360/0x360
worker_thread+0x30/0x370
? process_one_work+0x360/0x360
kthread+0x116/0x130
? kthread_park+0x80/0x80
ret_from_fork+0x22/0x30
To avoid the above warning and later on the kernel panic that could happen
on shutdown due to a NULL pointer dereference, make sure to set the
netns_refund flag that was introduced by commit 3a5ca857079e ("can: dev:
Move device back to init netns on owning netns delete") to properly
restore the IPoIB interfaces to the initial netns. |
| In the Linux kernel, the following vulnerability has been resolved:
hugetlb, userfaultfd: fix reservation restore on userfaultfd error
Currently in the is_continue case in hugetlb_mcopy_atomic_pte(), if we
bail out using "goto out_release_unlock;" in the cases where idx >=
size, or !huge_pte_none(), the code will detect that new_pagecache_page
== false, and so call restore_reserve_on_error(). In this case I see
restore_reserve_on_error() delete the reservation, and the following
call to remove_inode_hugepages() will increment h->resv_hugepages
causing a 100% reproducible leak.
We should treat the is_continue case similar to adding a page into the
pagecache and set new_pagecache_page to true, to indicate that there is
no reservation to restore on the error path, and we need not call
restore_reserve_on_error(). Rename new_pagecache_page to
page_in_pagecache to make that clear. |
| In the Linux kernel, the following vulnerability has been resolved:
net/mlx5e: nullify cq->dbg pointer in mlx5_debug_cq_remove()
Prior to this patch in case mlx5_core_destroy_cq() failed it proceeds
to rest of destroy operations. mlx5_core_destroy_cq() could be called again
by user and cause additional call of mlx5_debug_cq_remove().
cq->dbg was not nullify in previous call and cause the crash.
Fix it by nullify cq->dbg pointer after removal.
Also proceed to destroy operations only if FW return 0
for MLX5_CMD_OP_DESTROY_CQ command.
general protection fault, probably for non-canonical address 0x2000300004058: 0000 [#1] SMP PTI
CPU: 5 PID: 1228 Comm: python Not tainted 5.15.0-rc5_for_upstream_min_debug_2021_10_14_11_06 #1
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014
RIP: 0010:lockref_get+0x1/0x60
Code: 5d e9 53 ff ff ff 48 8d 7f 70 e8 0a 2e 48 00 c7 85 d0 00 00 00 02
00 00 00 c6 45 70 00 fb 5d c3 c3 cc cc cc cc cc cc cc cc 53 <48> 8b 17
48 89 fb 85 d2 75 3d 48 89 d0 bf 64 00 00 00 48 89 c1 48
RSP: 0018:ffff888137dd7a38 EFLAGS: 00010206
RAX: 0000000000000000 RBX: ffff888107d5f458 RCX: 00000000fffffffe
RDX: 000000000002c2b0 RSI: ffffffff8155e2e0 RDI: 0002000300004058
RBP: ffff888137dd7a88 R08: 0002000300004058 R09: ffff8881144a9f88
R10: 0000000000000000 R11: 0000000000000000 R12: ffff8881141d4000
R13: ffff888137dd7c68 R14: ffff888137dd7d58 R15: ffff888137dd7cc0
FS: 00007f4644f2a4c0(0000) GS:ffff8887a2d40000(0000)
knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 000055b4500f4380 CR3: 0000000114f7a003 CR4: 0000000000170ea0
Call Trace:
simple_recursive_removal+0x33/0x2e0
? debugfs_remove+0x60/0x60
debugfs_remove+0x40/0x60
mlx5_debug_cq_remove+0x32/0x70 [mlx5_core]
mlx5_core_destroy_cq+0x41/0x1d0 [mlx5_core]
devx_obj_cleanup+0x151/0x330 [mlx5_ib]
? __pollwait+0xd0/0xd0
? xas_load+0x5/0x70
? xa_load+0x62/0xa0
destroy_hw_idr_uobject+0x20/0x80 [ib_uverbs]
uverbs_destroy_uobject+0x3b/0x360 [ib_uverbs]
uobj_destroy+0x54/0xa0 [ib_uverbs]
ib_uverbs_cmd_verbs+0xaf2/0x1160 [ib_uverbs]
? uverbs_finalize_object+0xd0/0xd0 [ib_uverbs]
ib_uverbs_ioctl+0xc4/0x1b0 [ib_uverbs]
__x64_sys_ioctl+0x3e4/0x8e0 |
| In the Linux kernel, the following vulnerability has been resolved:
spi: fix use-after-free of the add_lock mutex
Commit 6098475d4cb4 ("spi: Fix deadlock when adding SPI controllers on
SPI buses") introduced a per-controller mutex. But mutex_unlock() of
said lock is called after the controller is already freed:
spi_unregister_controller(ctlr)
-> put_device(&ctlr->dev)
-> spi_controller_release(dev)
-> mutex_unlock(&ctrl->add_lock)
Move the put_device() after the mutex_unlock(). |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: core: sysfs: Fix hang when device state is set via sysfs
This fixes a regression added with:
commit f0f82e2476f6 ("scsi: core: Fix capacity set to zero after
offlinining device")
The problem is that after iSCSI recovery, iscsid will call into the kernel
to set the dev's state to running, and with that patch we now call
scsi_rescan_device() with the state_mutex held. If the SCSI error handler
thread is just starting to test the device in scsi_send_eh_cmnd() then it's
going to try to grab the state_mutex.
We are then stuck, because when scsi_rescan_device() tries to send its I/O
scsi_queue_rq() calls -> scsi_host_queue_ready() -> scsi_host_in_recovery()
which will return true (the host state is still in recovery) and I/O will
just be requeued. scsi_send_eh_cmnd() will then never be able to grab the
state_mutex to finish error handling.
To prevent the deadlock move the rescan-related code to after we drop the
state_mutex.
This also adds a check for if we are already in the running state. This
prevents extra scans and helps the iscsid case where if the transport class
has already onlined the device during its recovery process then we don't
need userspace to do it again plus possibly block that daemon. |
| In the Linux kernel, the following vulnerability has been resolved:
NFSv4: Fix a NULL pointer dereference in pnfs_mark_matching_lsegs_return()
Commit de144ff4234f changes _pnfs_return_layout() to call
pnfs_mark_matching_lsegs_return() passing NULL as the struct
pnfs_layout_range argument. Unfortunately,
pnfs_mark_matching_lsegs_return() doesn't check if we have a value here
before dereferencing it, causing an oops.
I'm able to hit this crash consistently when running connectathon basic
tests on NFS v4.1/v4.2 against Ontap. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/meson: fix shutdown crash when component not probed
When main component is not probed, by example when the dw-hdmi module is
not loaded yet or in probe defer, the following crash appears on shutdown:
Unable to handle kernel NULL pointer dereference at virtual address 0000000000000038
...
pc : meson_drv_shutdown+0x24/0x50
lr : platform_drv_shutdown+0x20/0x30
...
Call trace:
meson_drv_shutdown+0x24/0x50
platform_drv_shutdown+0x20/0x30
device_shutdown+0x158/0x360
kernel_restart_prepare+0x38/0x48
kernel_restart+0x18/0x68
__do_sys_reboot+0x224/0x250
__arm64_sys_reboot+0x24/0x30
...
Simply check if the priv struct has been allocated before using it. |
| In the Linux kernel, the following vulnerability has been resolved:
tipc: skb_linearize the head skb when reassembling msgs
It's not a good idea to append the frag skb to a skb's frag_list if
the frag_list already has skbs from elsewhere, such as this skb was
created by pskb_copy() where the frag_list was cloned (all the skbs
in it were skb_get'ed) and shared by multiple skbs.
However, the new appended frag skb should have been only seen by the
current skb. Otherwise, it will cause use after free crashes as this
appended frag skb are seen by multiple skbs but it only got skb_get
called once.
The same thing happens with a skb updated by pskb_may_pull() with a
skb_cloned skb. Li Shuang has reported quite a few crashes caused
by this when doing testing over macvlan devices:
[] kernel BUG at net/core/skbuff.c:1970!
[] Call Trace:
[] skb_clone+0x4d/0xb0
[] macvlan_broadcast+0xd8/0x160 [macvlan]
[] macvlan_process_broadcast+0x148/0x150 [macvlan]
[] process_one_work+0x1a7/0x360
[] worker_thread+0x30/0x390
[] kernel BUG at mm/usercopy.c:102!
[] Call Trace:
[] __check_heap_object+0xd3/0x100
[] __check_object_size+0xff/0x16b
[] simple_copy_to_iter+0x1c/0x30
[] __skb_datagram_iter+0x7d/0x310
[] __skb_datagram_iter+0x2a5/0x310
[] skb_copy_datagram_iter+0x3b/0x90
[] tipc_recvmsg+0x14a/0x3a0 [tipc]
[] ____sys_recvmsg+0x91/0x150
[] ___sys_recvmsg+0x7b/0xc0
[] kernel BUG at mm/slub.c:305!
[] Call Trace:
[] <IRQ>
[] kmem_cache_free+0x3ff/0x400
[] __netif_receive_skb_core+0x12c/0xc40
[] ? kmem_cache_alloc+0x12e/0x270
[] netif_receive_skb_internal+0x3d/0xb0
[] ? get_rx_page_info+0x8e/0xa0 [be2net]
[] be_poll+0x6ef/0xd00 [be2net]
[] ? irq_exit+0x4f/0x100
[] net_rx_action+0x149/0x3b0
...
This patch is to fix it by linearizing the head skb if it has frag_list
set in tipc_buf_append(). Note that we choose to do this before calling
skb_unshare(), as __skb_linearize() will avoid skb_copy(). Also, we can
not just drop the frag_list either as the early time. |
| In the Linux kernel, the following vulnerability has been resolved:
net: zero-initialize tc skb extension on allocation
Function skb_ext_add() doesn't initialize created skb extension with any
value and leaves it up to the user. However, since extension of type
TC_SKB_EXT originally contained only single value tc_skb_ext->chain its
users used to just assign the chain value without setting whole extension
memory to zero first. This assumption changed when TC_SKB_EXT extension was
extended with additional fields but not all users were updated to
initialize the new fields which leads to use of uninitialized memory
afterwards. UBSAN log:
[ 778.299821] UBSAN: invalid-load in net/openvswitch/flow.c:899:28
[ 778.301495] load of value 107 is not a valid value for type '_Bool'
[ 778.303215] CPU: 0 PID: 0 Comm: swapper/0 Not tainted 5.12.0-rc7+ #2
[ 778.304933] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014
[ 778.307901] Call Trace:
[ 778.308680] <IRQ>
[ 778.309358] dump_stack+0xbb/0x107
[ 778.310307] ubsan_epilogue+0x5/0x40
[ 778.311167] __ubsan_handle_load_invalid_value.cold+0x43/0x48
[ 778.312454] ? memset+0x20/0x40
[ 778.313230] ovs_flow_key_extract.cold+0xf/0x14 [openvswitch]
[ 778.314532] ovs_vport_receive+0x19e/0x2e0 [openvswitch]
[ 778.315749] ? ovs_vport_find_upcall_portid+0x330/0x330 [openvswitch]
[ 778.317188] ? create_prof_cpu_mask+0x20/0x20
[ 778.318220] ? arch_stack_walk+0x82/0xf0
[ 778.319153] ? secondary_startup_64_no_verify+0xb0/0xbb
[ 778.320399] ? stack_trace_save+0x91/0xc0
[ 778.321362] ? stack_trace_consume_entry+0x160/0x160
[ 778.322517] ? lock_release+0x52e/0x760
[ 778.323444] netdev_frame_hook+0x323/0x610 [openvswitch]
[ 778.324668] ? ovs_netdev_get_vport+0xe0/0xe0 [openvswitch]
[ 778.325950] __netif_receive_skb_core+0x771/0x2db0
[ 778.327067] ? lock_downgrade+0x6e0/0x6f0
[ 778.328021] ? lock_acquire+0x565/0x720
[ 778.328940] ? generic_xdp_tx+0x4f0/0x4f0
[ 778.329902] ? inet_gro_receive+0x2a7/0x10a0
[ 778.330914] ? lock_downgrade+0x6f0/0x6f0
[ 778.331867] ? udp4_gro_receive+0x4c4/0x13e0
[ 778.332876] ? lock_release+0x52e/0x760
[ 778.333808] ? dev_gro_receive+0xcc8/0x2380
[ 778.334810] ? lock_downgrade+0x6f0/0x6f0
[ 778.335769] __netif_receive_skb_list_core+0x295/0x820
[ 778.336955] ? process_backlog+0x780/0x780
[ 778.337941] ? mlx5e_rep_tc_netdevice_event_unregister+0x20/0x20 [mlx5_core]
[ 778.339613] ? seqcount_lockdep_reader_access.constprop.0+0xa7/0xc0
[ 778.341033] ? kvm_clock_get_cycles+0x14/0x20
[ 778.342072] netif_receive_skb_list_internal+0x5f5/0xcb0
[ 778.343288] ? __kasan_kmalloc+0x7a/0x90
[ 778.344234] ? mlx5e_handle_rx_cqe_mpwrq+0x9e0/0x9e0 [mlx5_core]
[ 778.345676] ? mlx5e_xmit_xdp_frame_mpwqe+0x14d0/0x14d0 [mlx5_core]
[ 778.347140] ? __netif_receive_skb_list_core+0x820/0x820
[ 778.348351] ? mlx5e_post_rx_mpwqes+0xa6/0x25d0 [mlx5_core]
[ 778.349688] ? napi_gro_flush+0x26c/0x3c0
[ 778.350641] napi_complete_done+0x188/0x6b0
[ 778.351627] mlx5e_napi_poll+0x373/0x1b80 [mlx5_core]
[ 778.352853] __napi_poll+0x9f/0x510
[ 778.353704] ? mlx5_flow_namespace_set_mode+0x260/0x260 [mlx5_core]
[ 778.355158] net_rx_action+0x34c/0xa40
[ 778.356060] ? napi_threaded_poll+0x3d0/0x3d0
[ 778.357083] ? sched_clock_cpu+0x18/0x190
[ 778.358041] ? __common_interrupt+0x8e/0x1a0
[ 778.359045] __do_softirq+0x1ce/0x984
[ 778.359938] __irq_exit_rcu+0x137/0x1d0
[ 778.360865] irq_exit_rcu+0xa/0x20
[ 778.361708] common_interrupt+0x80/0xa0
[ 778.362640] </IRQ>
[ 778.363212] asm_common_interrupt+0x1e/0x40
[ 778.364204] RIP: 0010:native_safe_halt+0xe/0x10
[ 778.365273] Code: 4f ff ff ff 4c 89 e7 e8 50 3f 40 fe e9 dc fe ff ff 48 89 df e8 43 3f 40 fe eb 90 cc e9 07 00 00 00 0f 00 2d 74 05 62 00 fb f4 <c3> 90 e9 07 00 00 00 0f 00 2d 64 05 62 00 f4 c3 cc cc 0f 1f 44 00
[ 778.369355] RSP: 0018:ffffffff84407e48 EFLAGS: 00000246
[ 778.370570] RAX
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
mptcp: fix sk_forward_memory corruption on retransmission
MPTCP sk_forward_memory handling is a bit special, as such field
is protected by the msk socket spin_lock, instead of the plain
socket lock.
Currently we have a code path updating such field without handling
the relevant lock:
__mptcp_retrans() -> __mptcp_clean_una_wakeup()
Several helpers in __mptcp_clean_una_wakeup() will update
sk_forward_alloc, possibly causing such field corruption, as reported
by Matthieu.
Address the issue providing and using a new variant of blamed function
which explicitly acquires the msk spin lock. |
| In the Linux kernel, the following vulnerability has been resolved:
io_uring: fix link timeout refs
WARNING: CPU: 0 PID: 10242 at lib/refcount.c:28 refcount_warn_saturate+0x15b/0x1a0 lib/refcount.c:28
RIP: 0010:refcount_warn_saturate+0x15b/0x1a0 lib/refcount.c:28
Call Trace:
__refcount_sub_and_test include/linux/refcount.h:283 [inline]
__refcount_dec_and_test include/linux/refcount.h:315 [inline]
refcount_dec_and_test include/linux/refcount.h:333 [inline]
io_put_req fs/io_uring.c:2140 [inline]
io_queue_linked_timeout fs/io_uring.c:6300 [inline]
__io_queue_sqe+0xbef/0xec0 fs/io_uring.c:6354
io_submit_sqe fs/io_uring.c:6534 [inline]
io_submit_sqes+0x2bbd/0x7c50 fs/io_uring.c:6660
__do_sys_io_uring_enter fs/io_uring.c:9240 [inline]
__se_sys_io_uring_enter+0x256/0x1d60 fs/io_uring.c:9182
io_link_timeout_fn() should put only one reference of the linked timeout
request, however in case of racing with the master request's completion
first io_req_complete() puts one and then io_put_req_deferred() is
called. |
| In the Linux kernel, the following vulnerability has been resolved:
IB/qib: Fix memory leak in qib_user_sdma_queue_pkts()
The wrong goto label was used for the error case and missed cleanup of the
pkt allocation.
Addresses-Coverity-ID: 1493352 ("Resource leak") |