| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
cxl/mem: Fix shutdown order
Ira reports that removing cxl_mock_mem causes a crash with the following
trace:
BUG: kernel NULL pointer dereference, address: 0000000000000044
[..]
RIP: 0010:cxl_region_decode_reset+0x7f/0x180 [cxl_core]
[..]
Call Trace:
<TASK>
cxl_region_detach+0xe8/0x210 [cxl_core]
cxl_decoder_kill_region+0x27/0x40 [cxl_core]
cxld_unregister+0x29/0x40 [cxl_core]
devres_release_all+0xb8/0x110
device_unbind_cleanup+0xe/0x70
device_release_driver_internal+0x1d2/0x210
bus_remove_device+0xd7/0x150
device_del+0x155/0x3e0
device_unregister+0x13/0x60
devm_release_action+0x4d/0x90
? __pfx_unregister_port+0x10/0x10 [cxl_core]
delete_endpoint+0x121/0x130 [cxl_core]
devres_release_all+0xb8/0x110
device_unbind_cleanup+0xe/0x70
device_release_driver_internal+0x1d2/0x210
bus_remove_device+0xd7/0x150
device_del+0x155/0x3e0
? lock_release+0x142/0x290
cdev_device_del+0x15/0x50
cxl_memdev_unregister+0x54/0x70 [cxl_core]
This crash is due to the clearing out the cxl_memdev's driver context
(@cxlds) before the subsystem is done with it. This is ultimately due to
the region(s), that this memdev is a member, being torn down and expecting
to be able to de-reference @cxlds, like here:
static int cxl_region_decode_reset(struct cxl_region *cxlr, int count)
...
if (cxlds->rcd)
goto endpoint_reset;
...
Fix it by keeping the driver context valid until memdev-device
unregistration, and subsequently the entire stack of related
dependencies, unwinds. |
| In the Linux kernel, the following vulnerability has been resolved:
f2fs: fix to drop meta_inode's page cache in f2fs_put_super()
syzbot reports a kernel bug as below:
F2FS-fs (loop1): detect filesystem reference count leak during umount, type: 10, count: 1
kernel BUG at fs/f2fs/super.c:1639!
CPU: 0 PID: 15451 Comm: syz-executor.1 Not tainted 6.5.0-syzkaller-09338-ge0152e7481c6 #0
RIP: 0010:f2fs_put_super+0xce1/0xed0 fs/f2fs/super.c:1639
Call Trace:
generic_shutdown_super+0x161/0x3c0 fs/super.c:693
kill_block_super+0x3b/0x70 fs/super.c:1646
kill_f2fs_super+0x2b7/0x3d0 fs/f2fs/super.c:4879
deactivate_locked_super+0x9a/0x170 fs/super.c:481
deactivate_super+0xde/0x100 fs/super.c:514
cleanup_mnt+0x222/0x3d0 fs/namespace.c:1254
task_work_run+0x14d/0x240 kernel/task_work.c:179
resume_user_mode_work include/linux/resume_user_mode.h:49 [inline]
exit_to_user_mode_loop kernel/entry/common.c:171 [inline]
exit_to_user_mode_prepare+0x210/0x240 kernel/entry/common.c:204
__syscall_exit_to_user_mode_work kernel/entry/common.c:285 [inline]
syscall_exit_to_user_mode+0x1d/0x60 kernel/entry/common.c:296
do_syscall_64+0x44/0xb0 arch/x86/entry/common.c:86
entry_SYSCALL_64_after_hwframe+0x63/0xcd
In f2fs_put_super(), it tries to do sanity check on dirty and IO
reference count of f2fs, once there is any reference count leak,
it will trigger panic.
The root case is, during f2fs_put_super(), if there is any IO error
in f2fs_wait_on_all_pages(), we missed to truncate meta_inode's page
cache later, result in panic, fix this case. |
| In the Linux kernel, the following vulnerability has been resolved:
fbdev: imsttfb: fix a resource leak in probe
I've re-written the error handling but the bug is that if init_imstt()
fails we need to call iounmap(par->cmap_regs). |
| In the Linux kernel, the following vulnerability has been resolved:
f2fs: split initial and dynamic conditions for extent_cache
Let's allocate the extent_cache tree without dynamic conditions to avoid a
missing condition causing a panic as below.
# create a file w/ a compressed flag
# disable the compression
# panic while updating extent_cache
F2FS-fs (dm-64): Swapfile: last extent is not aligned to section
F2FS-fs (dm-64): Swapfile (3) is not align to section: 1) creat(), 2) ioctl(F2FS_IOC_SET_PIN_FILE), 3) fallocate(2097152 * N)
Adding 124996k swap on ./swap-file. Priority:0 extents:2 across:17179494468k
==================================================================
BUG: KASAN: null-ptr-deref in instrument_atomic_read_write out/common/include/linux/instrumented.h:101 [inline]
BUG: KASAN: null-ptr-deref in atomic_try_cmpxchg_acquire out/common/include/asm-generic/atomic-instrumented.h:705 [inline]
BUG: KASAN: null-ptr-deref in queued_write_lock out/common/include/asm-generic/qrwlock.h:92 [inline]
BUG: KASAN: null-ptr-deref in __raw_write_lock out/common/include/linux/rwlock_api_smp.h:211 [inline]
BUG: KASAN: null-ptr-deref in _raw_write_lock+0x5a/0x110 out/common/kernel/locking/spinlock.c:295
Write of size 4 at addr 0000000000000030 by task syz-executor154/3327
CPU: 0 PID: 3327 Comm: syz-executor154 Tainted: G O 5.10.185 #1
Hardware name: emulation qemu-x86/qemu-x86, BIOS 2023.01-21885-gb3cc1cd24d 01/01/2023
Call Trace:
__dump_stack out/common/lib/dump_stack.c:77 [inline]
dump_stack_lvl+0x17e/0x1c4 out/common/lib/dump_stack.c:118
__kasan_report+0x16c/0x260 out/common/mm/kasan/report.c:415
kasan_report+0x51/0x70 out/common/mm/kasan/report.c:428
kasan_check_range+0x2f3/0x340 out/common/mm/kasan/generic.c:186
__kasan_check_write+0x14/0x20 out/common/mm/kasan/shadow.c:37
instrument_atomic_read_write out/common/include/linux/instrumented.h:101 [inline]
atomic_try_cmpxchg_acquire out/common/include/asm-generic/atomic-instrumented.h:705 [inline]
queued_write_lock out/common/include/asm-generic/qrwlock.h:92 [inline]
__raw_write_lock out/common/include/linux/rwlock_api_smp.h:211 [inline]
_raw_write_lock+0x5a/0x110 out/common/kernel/locking/spinlock.c:295
__drop_extent_tree+0xdf/0x2f0 out/common/fs/f2fs/extent_cache.c:1155
f2fs_drop_extent_tree+0x17/0x30 out/common/fs/f2fs/extent_cache.c:1172
f2fs_insert_range out/common/fs/f2fs/file.c:1600 [inline]
f2fs_fallocate+0x19fd/0x1f40 out/common/fs/f2fs/file.c:1764
vfs_fallocate+0x514/0x9b0 out/common/fs/open.c:310
ksys_fallocate out/common/fs/open.c:333 [inline]
__do_sys_fallocate out/common/fs/open.c:341 [inline]
__se_sys_fallocate out/common/fs/open.c:339 [inline]
__x64_sys_fallocate+0xb8/0x100 out/common/fs/open.c:339
do_syscall_64+0x35/0x50 out/common/arch/x86/entry/common.c:46 |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: wilc1000: use vmm_table as array in wilc struct
Enabling KASAN and running some iperf tests raises some memory issues with
vmm_table:
BUG: KASAN: slab-out-of-bounds in wilc_wlan_handle_txq+0x6ac/0xdb4
Write of size 4 at addr c3a61540 by task wlan0-tx/95
KASAN detects that we are writing data beyond range allocated to vmm_table.
There is indeed a mismatch between the size passed to allocator in
wilc_wlan_init, and the range of possible indexes used later: allocation
size is missing a multiplication by sizeof(u32) |
| In the Linux kernel, the following vulnerability has been resolved:
IB/IPoIB: Fix legacy IPoIB due to wrong number of queues
The cited commit creates child PKEY interfaces over netlink will
multiple tx and rx queues, but some devices doesn't support more than 1
tx and 1 rx queues. This causes to a crash when traffic is sent over the
PKEY interface due to the parent having a single queue but the child
having multiple queues.
This patch fixes the number of queues to 1 for legacy IPoIB at the
earliest possible point in time.
BUG: kernel NULL pointer dereference, address: 000000000000036b
PGD 0 P4D 0
Oops: 0000 [#1] SMP
CPU: 4 PID: 209665 Comm: python3 Not tainted 6.1.0_for_upstream_min_debug_2022_12_12_17_02 #1
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014
RIP: 0010:kmem_cache_alloc+0xcb/0x450
Code: ce 7e 49 8b 50 08 49 83 78 10 00 4d 8b 28 0f 84 cb 02 00 00 4d 85 ed 0f 84 c2 02 00 00 41 8b 44 24 28 48 8d 4a
01 49 8b 3c 24 <49> 8b 5c 05 00 4c 89 e8 65 48 0f c7 0f 0f 94 c0 84 c0 74 b8 41 8b
RSP: 0018:ffff88822acbbab8 EFLAGS: 00010202
RAX: 0000000000000070 RBX: ffff8881c28e3e00 RCX: 00000000064f8dae
RDX: 00000000064f8dad RSI: 0000000000000a20 RDI: 0000000000030d00
RBP: 0000000000000a20 R08: ffff8882f5d30d00 R09: ffff888104032f40
R10: ffff88810fade828 R11: 736f6d6570736575 R12: ffff88810081c000
R13: 00000000000002fb R14: ffffffff817fc865 R15: 0000000000000000
FS: 00007f9324ff9700(0000) GS:ffff8882f5d00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 000000000000036b CR3: 00000001125af004 CR4: 0000000000370ea0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
skb_clone+0x55/0xd0
ip6_finish_output2+0x3fe/0x690
ip6_finish_output+0xfa/0x310
ip6_send_skb+0x1e/0x60
udp_v6_send_skb+0x1e5/0x420
udpv6_sendmsg+0xb3c/0xe60
? ip_mc_finish_output+0x180/0x180
? __switch_to_asm+0x3a/0x60
? __switch_to_asm+0x34/0x60
sock_sendmsg+0x33/0x40
__sys_sendto+0x103/0x160
? _copy_to_user+0x21/0x30
? kvm_clock_get_cycles+0xd/0x10
? ktime_get_ts64+0x49/0xe0
__x64_sys_sendto+0x25/0x30
do_syscall_64+0x3d/0x90
entry_SYSCALL_64_after_hwframe+0x46/0xb0
RIP: 0033:0x7f9374f1ed14
Code: 42 41 f8 ff 44 8b 4c 24 2c 4c 8b 44 24 20 89 c5 44 8b 54 24 28 48 8b 54 24 18 b8 2c 00 00 00 48 8b 74 24 10 8b
7c 24 08 0f 05 <48> 3d 00 f0 ff ff 77 34 89 ef 48 89 44 24 08 e8 68 41 f8 ff 48 8b
RSP: 002b:00007f9324ff7bd0 EFLAGS: 00000293 ORIG_RAX: 000000000000002c
RAX: ffffffffffffffda RBX: 00007f9324ff7cc8 RCX: 00007f9374f1ed14
RDX: 00000000000002fb RSI: 00007f93000052f0 RDI: 0000000000000030
RBP: 0000000000000000 R08: 00007f9324ff7d40 R09: 000000000000001c
R10: 0000000000000000 R11: 0000000000000293 R12: 0000000000000000
R13: 000000012a05f200 R14: 0000000000000001 R15: 00007f9374d57bdc
</TASK> |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amdgpu/fence: Fix oops due to non-matching drm_sched init/fini
Currently amdgpu calls drm_sched_fini() from the fence driver sw fini
routine - such function is expected to be called only after the
respective init function - drm_sched_init() - was executed successfully.
Happens that we faced a driver probe failure in the Steam Deck
recently, and the function drm_sched_fini() was called even without
its counter-part had been previously called, causing the following oops:
amdgpu: probe of 0000:04:00.0 failed with error -110
BUG: kernel NULL pointer dereference, address: 0000000000000090
PGD 0 P4D 0
Oops: 0002 [#1] PREEMPT SMP NOPTI
CPU: 0 PID: 609 Comm: systemd-udevd Not tainted 6.2.0-rc3-gpiccoli #338
Hardware name: Valve Jupiter/Jupiter, BIOS F7A0113 11/04/2022
RIP: 0010:drm_sched_fini+0x84/0xa0 [gpu_sched]
[...]
Call Trace:
<TASK>
amdgpu_fence_driver_sw_fini+0xc8/0xd0 [amdgpu]
amdgpu_device_fini_sw+0x2b/0x3b0 [amdgpu]
amdgpu_driver_release_kms+0x16/0x30 [amdgpu]
devm_drm_dev_init_release+0x49/0x70
[...]
To prevent that, check if the drm_sched was properly initialized for a
given ring before calling its fini counter-part.
Notice ideally we'd use sched.ready for that; such field is set as the latest
thing on drm_sched_init(). But amdgpu seems to "override" the meaning of such
field - in the above oops for example, it was a GFX ring causing the crash, and
the sched.ready field was set to true in the ring init routine, regardless of
the state of the DRM scheduler. Hence, we ended-up using sched.ops as per
Christian's suggestion [0], and also removed the no_scheduler check [1].
[0] https://lore.kernel.org/amd-gfx/984ee981-2906-0eaf-ccec-9f80975cb136@amd.com/
[1] https://lore.kernel.org/amd-gfx/cd0e2994-f85f-d837-609f-7056d5fb7231@amd.com/ |
| In the Linux kernel, the following vulnerability has been resolved:
net/mlx5e: Fix operation precedence bug in port timestamping napi_poll context
Indirection (*) is of lower precedence than postfix increment (++). Logic
in napi_poll context would cause an out-of-bound read by first increment
the pointer address by byte address space and then dereference the value.
Rather, the intended logic was to dereference first and then increment the
underlying value. |
| In the Linux kernel, the following vulnerability has been resolved:
netfilter: nf_tables: fix memleak when more than 255 elements expired
When more than 255 elements expired we're supposed to switch to a new gc
container structure.
This never happens: u8 type will wrap before reaching the boundary
and nft_trans_gc_space() always returns true.
This means we recycle the initial gc container structure and
lose track of the elements that came before.
While at it, don't deref 'gc' after we've passed it to call_rcu. |
| In the Linux kernel, the following vulnerability has been resolved:
dccp: fix dccp_v4_err()/dccp_v6_err() again
dh->dccph_x is the 9th byte (offset 8) in "struct dccp_hdr",
not in the "byte 7" as Jann claimed.
We need to make sure the ICMP messages are big enough,
using more standard ways (no more assumptions).
syzbot reported:
BUG: KMSAN: uninit-value in pskb_may_pull_reason include/linux/skbuff.h:2667 [inline]
BUG: KMSAN: uninit-value in pskb_may_pull include/linux/skbuff.h:2681 [inline]
BUG: KMSAN: uninit-value in dccp_v6_err+0x426/0x1aa0 net/dccp/ipv6.c:94
pskb_may_pull_reason include/linux/skbuff.h:2667 [inline]
pskb_may_pull include/linux/skbuff.h:2681 [inline]
dccp_v6_err+0x426/0x1aa0 net/dccp/ipv6.c:94
icmpv6_notify+0x4c7/0x880 net/ipv6/icmp.c:867
icmpv6_rcv+0x19d5/0x30d0
ip6_protocol_deliver_rcu+0xda6/0x2a60 net/ipv6/ip6_input.c:438
ip6_input_finish net/ipv6/ip6_input.c:483 [inline]
NF_HOOK include/linux/netfilter.h:304 [inline]
ip6_input+0x15d/0x430 net/ipv6/ip6_input.c:492
ip6_mc_input+0xa7e/0xc80 net/ipv6/ip6_input.c:586
dst_input include/net/dst.h:468 [inline]
ip6_rcv_finish+0x5db/0x870 net/ipv6/ip6_input.c:79
NF_HOOK include/linux/netfilter.h:304 [inline]
ipv6_rcv+0xda/0x390 net/ipv6/ip6_input.c:310
__netif_receive_skb_one_core net/core/dev.c:5523 [inline]
__netif_receive_skb+0x1a6/0x5a0 net/core/dev.c:5637
netif_receive_skb_internal net/core/dev.c:5723 [inline]
netif_receive_skb+0x58/0x660 net/core/dev.c:5782
tun_rx_batched+0x83b/0x920
tun_get_user+0x564c/0x6940 drivers/net/tun.c:2002
tun_chr_write_iter+0x3af/0x5d0 drivers/net/tun.c:2048
call_write_iter include/linux/fs.h:1985 [inline]
new_sync_write fs/read_write.c:491 [inline]
vfs_write+0x8ef/0x15c0 fs/read_write.c:584
ksys_write+0x20f/0x4c0 fs/read_write.c:637
__do_sys_write fs/read_write.c:649 [inline]
__se_sys_write fs/read_write.c:646 [inline]
__x64_sys_write+0x93/0xd0 fs/read_write.c:646
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x41/0xc0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
Uninit was created at:
slab_post_alloc_hook+0x12f/0xb70 mm/slab.h:767
slab_alloc_node mm/slub.c:3478 [inline]
kmem_cache_alloc_node+0x577/0xa80 mm/slub.c:3523
kmalloc_reserve+0x13d/0x4a0 net/core/skbuff.c:559
__alloc_skb+0x318/0x740 net/core/skbuff.c:650
alloc_skb include/linux/skbuff.h:1286 [inline]
alloc_skb_with_frags+0xc8/0xbd0 net/core/skbuff.c:6313
sock_alloc_send_pskb+0xa80/0xbf0 net/core/sock.c:2795
tun_alloc_skb drivers/net/tun.c:1531 [inline]
tun_get_user+0x23cf/0x6940 drivers/net/tun.c:1846
tun_chr_write_iter+0x3af/0x5d0 drivers/net/tun.c:2048
call_write_iter include/linux/fs.h:1985 [inline]
new_sync_write fs/read_write.c:491 [inline]
vfs_write+0x8ef/0x15c0 fs/read_write.c:584
ksys_write+0x20f/0x4c0 fs/read_write.c:637
__do_sys_write fs/read_write.c:649 [inline]
__se_sys_write fs/read_write.c:646 [inline]
__x64_sys_write+0x93/0xd0 fs/read_write.c:646
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x41/0xc0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
CPU: 0 PID: 4995 Comm: syz-executor153 Not tainted 6.6.0-rc1-syzkaller-00014-ga747acc0b752 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 08/04/2023 |
| In the Linux kernel, the following vulnerability has been resolved:
serial: 8250_port: Check IRQ data before use
In case the leaf driver wants to use IRQ polling (irq = 0) and
IIR register shows that an interrupt happened in the 8250 hardware
the IRQ data can be NULL. In such a case we need to skip the wake
event as we came to this path from the timer interrupt and quite
likely system is already awake.
Without this fix we have got an Oops:
serial8250: ttyS0 at I/O 0x3f8 (irq = 0, base_baud = 115200) is a 16550A
...
BUG: kernel NULL pointer dereference, address: 0000000000000010
RIP: 0010:serial8250_handle_irq+0x7c/0x240
Call Trace:
? serial8250_handle_irq+0x7c/0x240
? __pfx_serial8250_timeout+0x10/0x10 |
| In the Linux kernel, the following vulnerability has been resolved:
media: uvcvideo: Fix OOB read
If the index provided by the user is bigger than the mask size, we might do
an out of bound read. |
| In the Linux kernel, the following vulnerability has been resolved:
Revert "tty: n_gsm: fix UAF in gsm_cleanup_mux"
This reverts commit 9b9c8195f3f0d74a826077fc1c01b9ee74907239.
The commit above is reverted as it did not solve the original issue.
gsm_cleanup_mux() tries to free up the virtual ttys by calling
gsm_dlci_release() for each available DLCI. There, dlci_put() is called to
decrease the reference counter for the DLCI via tty_port_put() which
finally calls gsm_dlci_free(). This already clears the pointer which is
being checked in gsm_cleanup_mux() before calling gsm_dlci_release().
Therefore, it is not necessary to clear this pointer in gsm_cleanup_mux()
as done in the reverted commit. The commit introduces a null pointer
dereference:
<TASK>
? __die+0x1f/0x70
? page_fault_oops+0x156/0x420
? search_exception_tables+0x37/0x50
? fixup_exception+0x21/0x310
? exc_page_fault+0x69/0x150
? asm_exc_page_fault+0x26/0x30
? tty_port_put+0x19/0xa0
gsmtty_cleanup+0x29/0x80 [n_gsm]
release_one_tty+0x37/0xe0
process_one_work+0x1e6/0x3e0
worker_thread+0x4c/0x3d0
? __pfx_worker_thread+0x10/0x10
kthread+0xe1/0x110
? __pfx_kthread+0x10/0x10
ret_from_fork+0x2f/0x50
? __pfx_kthread+0x10/0x10
ret_from_fork_asm+0x1b/0x30
</TASK>
The actual issue is that nothing guards dlci_put() from being called
multiple times while the tty driver was triggered but did not yet finished
calling gsm_dlci_free(). |
| In the Linux kernel, the following vulnerability has been resolved:
mm/slab_common: fix slab_caches list corruption after kmem_cache_destroy()
After the commit in Fixes:, if a module that created a slab cache does not
release all of its allocated objects before destroying the cache (at rmmod
time), we might end up releasing the kmem_cache object without removing it
from the slab_caches list thus corrupting the list as kmem_cache_destroy()
ignores the return value from shutdown_cache(), which in turn never removes
the kmem_cache object from slabs_list in case __kmem_cache_shutdown() fails
to release all of the cache's slabs.
This is easily observable on a kernel built with CONFIG_DEBUG_LIST=y
as after that ill release the system will immediately trip on list_add,
or list_del, assertions similar to the one shown below as soon as another
kmem_cache gets created, or destroyed:
[ 1041.213632] list_del corruption. next->prev should be ffff89f596fb5768, but was 52f1e5016aeee75d. (next=ffff89f595a1b268)
[ 1041.219165] ------------[ cut here ]------------
[ 1041.221517] kernel BUG at lib/list_debug.c:62!
[ 1041.223452] invalid opcode: 0000 [#1] PREEMPT SMP PTI
[ 1041.225408] CPU: 2 PID: 1852 Comm: rmmod Kdump: loaded Tainted: G B W OE 6.5.0 #15
[ 1041.228244] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS edk2-20230524-3.fc37 05/24/2023
[ 1041.231212] RIP: 0010:__list_del_entry_valid+0xae/0xb0
Another quick way to trigger this issue, in a kernel with CONFIG_SLUB=y,
is to set slub_debug to poison the released objects and then just run
cat /proc/slabinfo after removing the module that leaks slab objects,
in which case the kernel will panic:
[ 50.954843] general protection fault, probably for non-canonical address 0xa56b6b6b6b6b6b8b: 0000 [#1] PREEMPT SMP PTI
[ 50.961545] CPU: 2 PID: 1495 Comm: cat Kdump: loaded Tainted: G B W OE 6.5.0 #15
[ 50.966808] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS edk2-20230524-3.fc37 05/24/2023
[ 50.972663] RIP: 0010:get_slabinfo+0x42/0xf0
This patch fixes this issue by properly checking shutdown_cache()'s
return value before taking the kmem_cache_release() branch. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: mwifiex: Fix oob check condition in mwifiex_process_rx_packet
Only skip the code path trying to access the rfc1042 headers when the
buffer is too small, so the driver can still process packets without
rfc1042 headers. |
| In the Linux kernel, the following vulnerability has been resolved:
net: nfc: llcp: Add lock when modifying device list
The device list needs its associated lock held when modifying it, or the
list could become corrupted, as syzbot discovered. |
| In the Linux kernel, the following vulnerability has been resolved:
RDMA/srp: Do not call scsi_done() from srp_abort()
After scmd_eh_abort_handler() has called the SCSI LLD eh_abort_handler
callback, it performs one of the following actions:
* Call scsi_queue_insert().
* Call scsi_finish_command().
* Call scsi_eh_scmd_add().
Hence, SCSI abort handlers must not call scsi_done(). Otherwise all
the above actions would trigger a use-after-free. Hence remove the
scsi_done() call from srp_abort(). Keep the srp_free_req() call
before returning SUCCESS because we may not see the command again if
SUCCESS is returned. |
| In the Linux kernel, the following vulnerability has been resolved:
bus: mhi: host: Add alignment check for event ring read pointer
Though we do check the event ring read pointer by "is_valid_ring_ptr"
to make sure it is in the buffer range, but there is another risk the
pointer may be not aligned. Since we are expecting event ring elements
are 128 bits(struct mhi_ring_element) aligned, an unaligned read pointer
could lead to multiple issues like DoS or ring buffer memory corruption.
So add a alignment check for event ring read pointer. |
| In the Linux kernel, the following vulnerability has been resolved:
efivarfs: force RO when remounting if SetVariable is not supported
If SetVariable at runtime is not supported by the firmware we never assign
a callback for that function. At the same time mount the efivarfs as
RO so no one can call that. However, we never check the permission flags
when someone remounts the filesystem as RW. As a result this leads to a
crash looking like this:
$ mount -o remount,rw /sys/firmware/efi/efivars
$ efi-updatevar -f PK.auth PK
[ 303.279166] Unable to handle kernel NULL pointer dereference at virtual address 0000000000000000
[ 303.280482] Mem abort info:
[ 303.280854] ESR = 0x0000000086000004
[ 303.281338] EC = 0x21: IABT (current EL), IL = 32 bits
[ 303.282016] SET = 0, FnV = 0
[ 303.282414] EA = 0, S1PTW = 0
[ 303.282821] FSC = 0x04: level 0 translation fault
[ 303.283771] user pgtable: 4k pages, 48-bit VAs, pgdp=000000004258c000
[ 303.284913] [0000000000000000] pgd=0000000000000000, p4d=0000000000000000
[ 303.286076] Internal error: Oops: 0000000086000004 [#1] PREEMPT SMP
[ 303.286936] Modules linked in: qrtr tpm_tis tpm_tis_core crct10dif_ce arm_smccc_trng rng_core drm fuse ip_tables x_tables ipv6
[ 303.288586] CPU: 1 PID: 755 Comm: efi-updatevar Not tainted 6.3.0-rc1-00108-gc7d0c4695c68 #1
[ 303.289748] Hardware name: Unknown Unknown Product/Unknown Product, BIOS 2023.04-00627-g88336918701d 04/01/2023
[ 303.291150] pstate: 60400005 (nZCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
[ 303.292123] pc : 0x0
[ 303.292443] lr : efivar_set_variable_locked+0x74/0xec
[ 303.293156] sp : ffff800008673c10
[ 303.293619] x29: ffff800008673c10 x28: ffff0000037e8000 x27: 0000000000000000
[ 303.294592] x26: 0000000000000800 x25: ffff000002467400 x24: 0000000000000027
[ 303.295572] x23: ffffd49ea9832000 x22: ffff0000020c9800 x21: ffff000002467000
[ 303.296566] x20: 0000000000000001 x19: 00000000000007fc x18: 0000000000000000
[ 303.297531] x17: 0000000000000000 x16: 0000000000000000 x15: 0000aaaac807ab54
[ 303.298495] x14: ed37489f673633c0 x13: 71c45c606de13f80 x12: 47464259e219acf4
[ 303.299453] x11: ffff000002af7b01 x10: 0000000000000003 x9 : 0000000000000002
[ 303.300431] x8 : 0000000000000010 x7 : ffffd49ea8973230 x6 : 0000000000a85201
[ 303.301412] x5 : 0000000000000000 x4 : ffff0000020c9800 x3 : 00000000000007fc
[ 303.302370] x2 : 0000000000000027 x1 : ffff000002467400 x0 : ffff000002467000
[ 303.303341] Call trace:
[ 303.303679] 0x0
[ 303.303938] efivar_entry_set_get_size+0x98/0x16c
[ 303.304585] efivarfs_file_write+0xd0/0x1a4
[ 303.305148] vfs_write+0xc4/0x2e4
[ 303.305601] ksys_write+0x70/0x104
[ 303.306073] __arm64_sys_write+0x1c/0x28
[ 303.306622] invoke_syscall+0x48/0x114
[ 303.307156] el0_svc_common.constprop.0+0x44/0xec
[ 303.307803] do_el0_svc+0x38/0x98
[ 303.308268] el0_svc+0x2c/0x84
[ 303.308702] el0t_64_sync_handler+0xf4/0x120
[ 303.309293] el0t_64_sync+0x190/0x194
[ 303.309794] Code: ???????? ???????? ???????? ???????? (????????)
[ 303.310612] ---[ end trace 0000000000000000 ]---
Fix this by adding a .reconfigure() function to the fs operations which
we can use to check the requested flags and deny anything that's not RO
if the firmware doesn't implement SetVariable at runtime. |
| In the Linux kernel, the following vulnerability has been resolved:
serial: 8250: omap: Don't skip resource freeing if pm_runtime_resume_and_get() failed
Returning an error code from .remove() makes the driver core emit the
little helpful error message:
remove callback returned a non-zero value. This will be ignored.
and then remove the device anyhow. So all resources that were not freed
are leaked in this case. Skipping serial8250_unregister_port() has the
potential to keep enough of the UART around to trigger a use-after-free.
So replace the error return (and with it the little helpful error
message) by a more useful error message and continue to cleanup. |