| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
drm/xe: Don't free job in TDR
Freeing job in TDR is not safe as TDR can pass the run_job thread
resulting in UAF. It is only safe for free job to naturally be called by
the scheduler. Rather free job in TDR, add to pending list.
(cherry picked from commit ea2f6a77d0c40d97f4a4dc93fee4afe15d94926d) |
| In the Linux kernel, the following vulnerability has been resolved:
reset: starfive: jh71x0: Fix accessing the empty member on JH7110 SoC
data->asserted will be NULL on JH7110 SoC since commit 82327b127d41
("reset: starfive: Add StarFive JH7110 reset driver") was added. Add
the judgment condition to avoid errors when calling reset_control_status
on JH7110 SoC. |
| In the Linux kernel, the following vulnerability has been resolved:
netfilter: bpf: must hold reference on net namespace
BUG: KASAN: slab-use-after-free in __nf_unregister_net_hook+0x640/0x6b0
Read of size 8 at addr ffff8880106fe400 by task repro/72=
bpf_nf_link_release+0xda/0x1e0
bpf_link_free+0x139/0x2d0
bpf_link_release+0x68/0x80
__fput+0x414/0xb60
Eric says:
It seems that bpf was able to defer the __nf_unregister_net_hook()
after exit()/close() time.
Perhaps a netns reference is missing, because the netns has been
dismantled/freed already.
bpf_nf_link_attach() does :
link->net = net;
But I do not see a reference being taken on net.
Add such a reference and release it after hook unreg.
Note that I was unable to get syzbot reproducer to work, so I
do not know if this resolves this splat. |
| In the Linux kernel, the following vulnerability has been resolved:
KVM: arm64: Unregister redistributor for failed vCPU creation
Alex reports that syzkaller has managed to trigger a use-after-free when
tearing down a VM:
BUG: KASAN: slab-use-after-free in kvm_put_kvm+0x300/0xe68 virt/kvm/kvm_main.c:5769
Read of size 8 at addr ffffff801c6890d0 by task syz.3.2219/10758
CPU: 3 UID: 0 PID: 10758 Comm: syz.3.2219 Not tainted 6.11.0-rc6-dirty #64
Hardware name: linux,dummy-virt (DT)
Call trace:
dump_backtrace+0x17c/0x1a8 arch/arm64/kernel/stacktrace.c:317
show_stack+0x2c/0x3c arch/arm64/kernel/stacktrace.c:324
__dump_stack lib/dump_stack.c:93 [inline]
dump_stack_lvl+0x94/0xc0 lib/dump_stack.c:119
print_report+0x144/0x7a4 mm/kasan/report.c:377
kasan_report+0xcc/0x128 mm/kasan/report.c:601
__asan_report_load8_noabort+0x20/0x2c mm/kasan/report_generic.c:381
kvm_put_kvm+0x300/0xe68 virt/kvm/kvm_main.c:5769
kvm_vm_release+0x4c/0x60 virt/kvm/kvm_main.c:1409
__fput+0x198/0x71c fs/file_table.c:422
____fput+0x20/0x30 fs/file_table.c:450
task_work_run+0x1cc/0x23c kernel/task_work.c:228
do_notify_resume+0x144/0x1a0 include/linux/resume_user_mode.h:50
el0_svc+0x64/0x68 arch/arm64/kernel/entry-common.c:169
el0t_64_sync_handler+0x90/0xfc arch/arm64/kernel/entry-common.c:730
el0t_64_sync+0x190/0x194 arch/arm64/kernel/entry.S:598
Upon closer inspection, it appears that we do not properly tear down the
MMIO registration for a vCPU that fails creation late in the game, e.g.
a vCPU w/ the same ID already exists in the VM.
It is important to consider the context of commit that introduced this bug
by moving the unregistration out of __kvm_vgic_vcpu_destroy(). That
change correctly sought to avoid an srcu v. config_lock inversion by
breaking up the vCPU teardown into two parts, one guarded by the
config_lock.
Fix the use-after-free while avoiding lock inversion by adding a
special-cased unregistration to __kvm_vgic_vcpu_destroy(). This is safe
because failed vCPUs are torn down outside of the config_lock. |
| In the Linux kernel, the following vulnerability has been resolved:
nfsd: fix race between laundromat and free_stateid
There is a race between laundromat handling of revoked delegations
and a client sending free_stateid operation. Laundromat thread
finds that delegation has expired and needs to be revoked so it
marks the delegation stid revoked and it puts it on a reaper list
but then it unlock the state lock and the actual delegation revocation
happens without the lock. Once the stid is marked revoked a racing
free_stateid processing thread does the following (1) it calls
list_del_init() which removes it from the reaper list and (2) frees
the delegation stid structure. The laundromat thread ends up not
calling the revoke_delegation() function for this particular delegation
but that means it will no release the lock lease that exists on
the file.
Now, a new open for this file comes in and ends up finding that
lease list isn't empty and calls nfsd_breaker_owns_lease() which ends
up trying to derefence a freed delegation stateid. Leading to the
followint use-after-free KASAN warning:
kernel: ==================================================================
kernel: BUG: KASAN: slab-use-after-free in nfsd_breaker_owns_lease+0x140/0x160 [nfsd]
kernel: Read of size 8 at addr ffff0000e73cd0c8 by task nfsd/6205
kernel:
kernel: CPU: 2 UID: 0 PID: 6205 Comm: nfsd Kdump: loaded Not tainted 6.11.0-rc7+ #9
kernel: Hardware name: Apple Inc. Apple Virtualization Generic Platform, BIOS 2069.0.0.0.0 08/03/2024
kernel: Call trace:
kernel: dump_backtrace+0x98/0x120
kernel: show_stack+0x1c/0x30
kernel: dump_stack_lvl+0x80/0xe8
kernel: print_address_description.constprop.0+0x84/0x390
kernel: print_report+0xa4/0x268
kernel: kasan_report+0xb4/0xf8
kernel: __asan_report_load8_noabort+0x1c/0x28
kernel: nfsd_breaker_owns_lease+0x140/0x160 [nfsd]
kernel: nfsd_file_do_acquire+0xb3c/0x11d0 [nfsd]
kernel: nfsd_file_acquire_opened+0x84/0x110 [nfsd]
kernel: nfs4_get_vfs_file+0x634/0x958 [nfsd]
kernel: nfsd4_process_open2+0xa40/0x1a40 [nfsd]
kernel: nfsd4_open+0xa08/0xe80 [nfsd]
kernel: nfsd4_proc_compound+0xb8c/0x2130 [nfsd]
kernel: nfsd_dispatch+0x22c/0x718 [nfsd]
kernel: svc_process_common+0x8e8/0x1960 [sunrpc]
kernel: svc_process+0x3d4/0x7e0 [sunrpc]
kernel: svc_handle_xprt+0x828/0xe10 [sunrpc]
kernel: svc_recv+0x2cc/0x6a8 [sunrpc]
kernel: nfsd+0x270/0x400 [nfsd]
kernel: kthread+0x288/0x310
kernel: ret_from_fork+0x10/0x20
This patch proposes a fixed that's based on adding 2 new additional
stid's sc_status values that help coordinate between the laundromat
and other operations (nfsd4_free_stateid() and nfsd4_delegreturn()).
First to make sure, that once the stid is marked revoked, it is not
removed by the nfsd4_free_stateid(), the laundromat take a reference
on the stateid. Then, coordinating whether the stid has been put
on the cl_revoked list or we are processing FREE_STATEID and need to
make sure to remove it from the list, each check that state and act
accordingly. If laundromat has added to the cl_revoke list before
the arrival of FREE_STATEID, then nfsd4_free_stateid() knows to remove
it from the list. If nfsd4_free_stateid() finds that operations arrived
before laundromat has placed it on cl_revoke list, it marks the state
freed and then laundromat will no longer add it to the list.
Also, for nfsd4_delegreturn() when looking for the specified stid,
we need to access stid that are marked removed or freeable, it means
the laundromat has started processing it but hasn't finished and this
delegreturn needs to return nfserr_deleg_revoked and not
nfserr_bad_stateid. The latter will not trigger a FREE_STATEID and the
lack of it will leave this stid on the cl_revoked list indefinitely. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/xe/oa: Fix overflow in oa batch buffer
By default xe_bb_create_job() appends a MI_BATCH_BUFFER_END to batch
buffer, this is not a problem if batch buffer is only used once but
oa reuses the batch buffer for the same metric and at each call
it appends a MI_BATCH_BUFFER_END, printing the warning below and then
overflowing.
[ 381.072016] ------------[ cut here ]------------
[ 381.072019] xe 0000:00:02.0: [drm] Assertion `bb->len * 4 + bb_prefetch(q->gt) <= size` failed!
platform: LUNARLAKE subplatform: 1
graphics: Xe2_LPG / Xe2_HPG 20.04 step B0
media: Xe2_LPM / Xe2_HPM 20.00 step B0
tile: 0 VRAM 0 B
GT: 0 type 1
So here checking if batch buffer already have MI_BATCH_BUFFER_END if
not append it.
v2:
- simply fix, suggestion from Ashutosh
(cherry picked from commit 9ba0e0f30ca42a98af3689460063edfb6315718a) |
| In the Linux kernel, the following vulnerability has been resolved:
pinctrl: stm32: check devm_kasprintf() returned value
devm_kasprintf() can return a NULL pointer on failure but this returned
value is not checked. Fix this lack and check the returned value.
Found by code review. |
| In the Linux kernel, the following vulnerability has been resolved:
mm/mremap: fix move_normal_pmd/retract_page_tables race
In mremap(), move_page_tables() looks at the type of the PMD entry and the
specified address range to figure out by which method the next chunk of
page table entries should be moved.
At that point, the mmap_lock is held in write mode, but no rmap locks are
held yet. For PMD entries that point to page tables and are fully covered
by the source address range, move_pgt_entry(NORMAL_PMD, ...) is called,
which first takes rmap locks, then does move_normal_pmd().
move_normal_pmd() takes the necessary page table locks at source and
destination, then moves an entire page table from the source to the
destination.
The problem is: The rmap locks, which protect against concurrent page
table removal by retract_page_tables() in the THP code, are only taken
after the PMD entry has been read and it has been decided how to move it.
So we can race as follows (with two processes that have mappings of the
same tmpfs file that is stored on a tmpfs mount with huge=advise); note
that process A accesses page tables through the MM while process B does it
through the file rmap:
process A process B
========= =========
mremap
mremap_to
move_vma
move_page_tables
get_old_pmd
alloc_new_pmd
*** PREEMPT ***
madvise(MADV_COLLAPSE)
do_madvise
madvise_walk_vmas
madvise_vma_behavior
madvise_collapse
hpage_collapse_scan_file
collapse_file
retract_page_tables
i_mmap_lock_read(mapping)
pmdp_collapse_flush
i_mmap_unlock_read(mapping)
move_pgt_entry(NORMAL_PMD, ...)
take_rmap_locks
move_normal_pmd
drop_rmap_locks
When this happens, move_normal_pmd() can end up creating bogus PMD entries
in the line `pmd_populate(mm, new_pmd, pmd_pgtable(pmd))`. The effect
depends on arch-specific and machine-specific details; on x86, you can end
up with physical page 0 mapped as a page table, which is likely
exploitable for user->kernel privilege escalation.
Fix the race by letting process B recheck that the PMD still points to a
page table after the rmap locks have been taken. Otherwise, we bail and
let the caller fall back to the PTE-level copying path, which will then
bail immediately at the pmd_none() check.
Bug reachability: Reaching this bug requires that you can create
shmem/file THP mappings - anonymous THP uses different code that doesn't
zap stuff under rmap locks. File THP is gated on an experimental config
flag (CONFIG_READ_ONLY_THP_FOR_FS), so on normal distro kernels you need
shmem THP to hit this bug. As far as I know, getting shmem THP normally
requires that you can mount your own tmpfs with the right mount flags,
which would require creating your own user+mount namespace; though I don't
know if some distros maybe enable shmem THP by default or something like
that.
Bug impact: This issue can likely be used for user->kernel privilege
escalation when it is reachable. |
| In the Linux kernel, the following vulnerability has been resolved:
zram: free secondary algorithms names
We need to kfree() secondary algorithms names when reset zram device that
had multi-streams, otherwise we leak memory.
[senozhatsky@chromium.org: kfree(NULL) is legal] |
| In the Linux kernel, the following vulnerability has been resolved:
nfsd: fix possible badness in FREE_STATEID
When multiple FREE_STATEIDs are sent for the same delegation stateid,
it can lead to a possible either use-after-free or counter refcount
underflow errors.
In nfsd4_free_stateid() under the client lock we find a delegation
stateid, however the code drops the lock before calling nfs4_put_stid(),
that allows another FREE_STATE to find the stateid again. The first one
will proceed to then free the stateid which leads to either
use-after-free or decrementing already zeroed counter. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/fbdev-dma: Only cleanup deferred I/O if necessary
Commit 5a498d4d06d6 ("drm/fbdev-dma: Only install deferred I/O if
necessary") initializes deferred I/O only if it is used.
drm_fbdev_dma_fb_destroy() however calls fb_deferred_io_cleanup()
unconditionally with struct fb_info.fbdefio == NULL. KASAN with the
out-of-tree Apple silicon display driver posts following warning from
__flush_work() of a random struct work_struct instead of the expected
NULL pointer derefs.
[ 22.053799] ------------[ cut here ]------------
[ 22.054832] WARNING: CPU: 2 PID: 1 at kernel/workqueue.c:4177 __flush_work+0x4d8/0x580
[ 22.056597] Modules linked in: uhid bnep uinput nls_ascii ip6_tables ip_tables i2c_dev loop fuse dm_multipath nfnetlink zram hid_magicmouse btrfs xor xor_neon brcmfmac_wcc raid6_pq hci_bcm4377 bluetooth brcmfmac hid_apple brcmutil nvmem_spmi_mfd simple_mfd_spmi dockchannel_hid cfg80211 joydev regmap_spmi nvme_apple ecdh_generic ecc macsmc_hid rfkill dwc3 appledrm snd_soc_macaudio macsmc_power nvme_core apple_isp phy_apple_atc apple_sart apple_rtkit_helper apple_dockchannel tps6598x macsmc_hwmon snd_soc_cs42l84 videobuf2_v4l2 spmi_apple_controller nvmem_apple_efuses videobuf2_dma_sg apple_z2 videobuf2_memops spi_nor panel_summit videobuf2_common asahi videodev pwm_apple apple_dcp snd_soc_apple_mca apple_admac spi_apple clk_apple_nco i2c_pasemi_platform snd_pcm_dmaengine mc i2c_pasemi_core mux_core ofpart adpdrm drm_dma_helper apple_dart apple_soc_cpufreq leds_pwm phram
[ 22.073768] CPU: 2 UID: 0 PID: 1 Comm: systemd-shutdow Not tainted 6.11.2-asahi+ #asahi-dev
[ 22.075612] Hardware name: Apple MacBook Pro (13-inch, M2, 2022) (DT)
[ 22.077032] pstate: 01400005 (nzcv daif +PAN -UAO -TCO +DIT -SSBS BTYPE=--)
[ 22.078567] pc : __flush_work+0x4d8/0x580
[ 22.079471] lr : __flush_work+0x54/0x580
[ 22.080345] sp : ffffc000836ef820
[ 22.081089] x29: ffffc000836ef880 x28: 0000000000000000 x27: ffff80002ddb7128
[ 22.082678] x26: dfffc00000000000 x25: 1ffff000096f0c57 x24: ffffc00082d3e358
[ 22.084263] x23: ffff80004b7862b8 x22: dfffc00000000000 x21: ffff80005aa1d470
[ 22.085855] x20: ffff80004b786000 x19: ffff80004b7862a0 x18: 0000000000000000
[ 22.087439] x17: 0000000000000000 x16: 0000000000000000 x15: 0000000000000005
[ 22.089030] x14: 1ffff800106ddf0a x13: 0000000000000000 x12: 0000000000000000
[ 22.090618] x11: ffffb800106ddf0f x10: dfffc00000000000 x9 : 1ffff800106ddf0e
[ 22.092206] x8 : 0000000000000000 x7 : aaaaaaaaaaaaaaaa x6 : 0000000000000001
[ 22.093790] x5 : ffffc000836ef728 x4 : 0000000000000000 x3 : 0000000000000020
[ 22.095368] x2 : 0000000000000008 x1 : 00000000000000aa x0 : 0000000000000000
[ 22.096955] Call trace:
[ 22.097505] __flush_work+0x4d8/0x580
[ 22.098330] flush_delayed_work+0x80/0xb8
[ 22.099231] fb_deferred_io_cleanup+0x3c/0x130
[ 22.100217] drm_fbdev_dma_fb_destroy+0x6c/0xe0 [drm_dma_helper]
[ 22.101559] unregister_framebuffer+0x210/0x2f0
[ 22.102575] drm_fb_helper_unregister_info+0x48/0x60
[ 22.103683] drm_fbdev_dma_client_unregister+0x4c/0x80 [drm_dma_helper]
[ 22.105147] drm_client_dev_unregister+0x1cc/0x230
[ 22.106217] drm_dev_unregister+0x58/0x570
[ 22.107125] apple_drm_unbind+0x50/0x98 [appledrm]
[ 22.108199] component_del+0x1f8/0x3a8
[ 22.109042] dcp_platform_shutdown+0x24/0x38 [apple_dcp]
[ 22.110357] platform_shutdown+0x70/0x90
[ 22.111219] device_shutdown+0x368/0x4d8
[ 22.112095] kernel_restart+0x6c/0x1d0
[ 22.112946] __arm64_sys_reboot+0x1c8/0x328
[ 22.113868] invoke_syscall+0x78/0x1a8
[ 22.114703] do_el0_svc+0x124/0x1a0
[ 22.115498] el0_svc+0x3c/0xe0
[ 22.116181] el0t_64_sync_handler+0x70/0xc0
[ 22.117110] el0t_64_sync+0x190/0x198
[ 22.117931] ---[ end trace 0000000000000000 ]--- |
| In the Linux kernel, the following vulnerability has been resolved:
net/smc: fix lacks of icsk_syn_mss with IPPROTO_SMC
Eric report a panic on IPPROTO_SMC, and give the facts
that when INET_PROTOSW_ICSK was set, icsk->icsk_sync_mss must be set too.
Bug: Unable to handle kernel NULL pointer dereference at virtual address
0000000000000000
Mem abort info:
ESR = 0x0000000086000005
EC = 0x21: IABT (current EL), IL = 32 bits
SET = 0, FnV = 0
EA = 0, S1PTW = 0
FSC = 0x05: level 1 translation fault
user pgtable: 4k pages, 48-bit VAs, pgdp=00000001195d1000
[0000000000000000] pgd=0800000109c46003, p4d=0800000109c46003,
pud=0000000000000000
Internal error: Oops: 0000000086000005 [#1] PREEMPT SMP
Modules linked in:
CPU: 1 UID: 0 PID: 8037 Comm: syz.3.265 Not tainted
6.11.0-rc7-syzkaller-g5f5673607153 #0
Hardware name: Google Google Compute Engine/Google Compute Engine,
BIOS Google 08/06/2024
pstate: 80400005 (Nzcv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
pc : 0x0
lr : cipso_v4_sock_setattr+0x2a8/0x3c0 net/ipv4/cipso_ipv4.c:1910
sp : ffff80009b887a90
x29: ffff80009b887aa0 x28: ffff80008db94050 x27: 0000000000000000
x26: 1fffe0001aa6f5b3 x25: dfff800000000000 x24: ffff0000db75da00
x23: 0000000000000000 x22: ffff0000d8b78518 x21: 0000000000000000
x20: ffff0000d537ad80 x19: ffff0000d8b78000 x18: 1fffe000366d79ee
x17: ffff8000800614a8 x16: ffff800080569b84 x15: 0000000000000001
x14: 000000008b336894 x13: 00000000cd96feaa x12: 0000000000000003
x11: 0000000000040000 x10: 00000000000020a3 x9 : 1fffe0001b16f0f1
x8 : 0000000000000000 x7 : 0000000000000000 x6 : 000000000000003f
x5 : 0000000000000040 x4 : 0000000000000001 x3 : 0000000000000000
x2 : 0000000000000002 x1 : 0000000000000000 x0 : ffff0000d8b78000
Call trace:
0x0
netlbl_sock_setattr+0x2e4/0x338 net/netlabel/netlabel_kapi.c:1000
smack_netlbl_add+0xa4/0x154 security/smack/smack_lsm.c:2593
smack_socket_post_create+0xa8/0x14c security/smack/smack_lsm.c:2973
security_socket_post_create+0x94/0xd4 security/security.c:4425
__sock_create+0x4c8/0x884 net/socket.c:1587
sock_create net/socket.c:1622 [inline]
__sys_socket_create net/socket.c:1659 [inline]
__sys_socket+0x134/0x340 net/socket.c:1706
__do_sys_socket net/socket.c:1720 [inline]
__se_sys_socket net/socket.c:1718 [inline]
__arm64_sys_socket+0x7c/0x94 net/socket.c:1718
__invoke_syscall arch/arm64/kernel/syscall.c:35 [inline]
invoke_syscall+0x98/0x2b8 arch/arm64/kernel/syscall.c:49
el0_svc_common+0x130/0x23c arch/arm64/kernel/syscall.c:132
do_el0_svc+0x48/0x58 arch/arm64/kernel/syscall.c:151
el0_svc+0x54/0x168 arch/arm64/kernel/entry-common.c:712
el0t_64_sync_handler+0x84/0xfc arch/arm64/kernel/entry-common.c:730
el0t_64_sync+0x190/0x194 arch/arm64/kernel/entry.S:598
Code: ???????? ???????? ???????? ???????? (????????)
---[ end trace 0000000000000000 ]---
This patch add a toy implementation that performs a simple return to
prevent such panic. This is because MSS can be set in sock_create_kern
or smc_setsockopt, similar to how it's done in AF_SMC. However, for
AF_SMC, there is currently no way to synchronize MSS within
__sys_connect_file. This toy implementation lays the groundwork for us
to support such feature for IPPROTO_SMC in the future. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/xe/ct: prevent UAF in send_recv()
Ensure we serialize with completion side to prevent UAF with fence going
out of scope on the stack, since we have no clue if it will fire after
the timeout before we can erase from the xa. Also we have some dependent
loads and stores for which we need the correct ordering, and we lack the
needed barriers. Fix this by grabbing the ct->lock after the wait, which
is also held by the completion side.
v2 (Badal):
- Also print done after acquiring the lock and seeing timeout.
(cherry picked from commit 52789ce35c55ccd30c4b67b9cc5b2af55e0122ea) |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: hci_conn: Fix UAF in hci_enhanced_setup_sync
This checks if the ACL connection remains valid as it could be destroyed
while hci_enhanced_setup_sync is pending on cmd_sync leading to the
following trace:
BUG: KASAN: slab-use-after-free in hci_enhanced_setup_sync+0x91b/0xa60
Read of size 1 at addr ffff888002328ffd by task kworker/u5:2/37
CPU: 0 UID: 0 PID: 37 Comm: kworker/u5:2 Not tainted 6.11.0-rc6-01300-g810be445d8d6 #7099
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-2.fc40 04/01/2014
Workqueue: hci0 hci_cmd_sync_work
Call Trace:
<TASK>
dump_stack_lvl+0x5d/0x80
? hci_enhanced_setup_sync+0x91b/0xa60
print_report+0x152/0x4c0
? hci_enhanced_setup_sync+0x91b/0xa60
? __virt_addr_valid+0x1fa/0x420
? hci_enhanced_setup_sync+0x91b/0xa60
kasan_report+0xda/0x1b0
? hci_enhanced_setup_sync+0x91b/0xa60
hci_enhanced_setup_sync+0x91b/0xa60
? __pfx_hci_enhanced_setup_sync+0x10/0x10
? __pfx___mutex_lock+0x10/0x10
hci_cmd_sync_work+0x1c2/0x330
process_one_work+0x7d9/0x1360
? __pfx_lock_acquire+0x10/0x10
? __pfx_process_one_work+0x10/0x10
? assign_work+0x167/0x240
worker_thread+0x5b7/0xf60
? __kthread_parkme+0xac/0x1c0
? __pfx_worker_thread+0x10/0x10
? __pfx_worker_thread+0x10/0x10
kthread+0x293/0x360
? __pfx_kthread+0x10/0x10
ret_from_fork+0x2f/0x70
? __pfx_kthread+0x10/0x10
ret_from_fork_asm+0x1a/0x30
</TASK>
Allocated by task 34:
kasan_save_stack+0x30/0x50
kasan_save_track+0x14/0x30
__kasan_kmalloc+0x8f/0xa0
__hci_conn_add+0x187/0x17d0
hci_connect_sco+0x2e1/0xb90
sco_sock_connect+0x2a2/0xb80
__sys_connect+0x227/0x2a0
__x64_sys_connect+0x6d/0xb0
do_syscall_64+0x71/0x140
entry_SYSCALL_64_after_hwframe+0x76/0x7e
Freed by task 37:
kasan_save_stack+0x30/0x50
kasan_save_track+0x14/0x30
kasan_save_free_info+0x3b/0x60
__kasan_slab_free+0x101/0x160
kfree+0xd0/0x250
device_release+0x9a/0x210
kobject_put+0x151/0x280
hci_conn_del+0x448/0xbf0
hci_abort_conn_sync+0x46f/0x980
hci_cmd_sync_work+0x1c2/0x330
process_one_work+0x7d9/0x1360
worker_thread+0x5b7/0xf60
kthread+0x293/0x360
ret_from_fork+0x2f/0x70
ret_from_fork_asm+0x1a/0x30 |
| In the Linux kernel, the following vulnerability has been resolved:
thermal: core: Reference count the zone in thermal_zone_get_by_id()
There are places in the thermal netlink code where nothing prevents
the thermal zone object from going away while being accessed after it
has been returned by thermal_zone_get_by_id().
To address this, make thermal_zone_get_by_id() get a reference on the
thermal zone device object to be returned with the help of get_device(),
under thermal_list_lock, and adjust all of its callers to this change
with the help of the cleanup.h infrastructure. |
| In the Linux kernel, the following vulnerability has been resolved:
thermal: core: Free tzp copy along with the thermal zone
The object pointed to by tz->tzp may still be accessed after being
freed in thermal_zone_device_unregister(), so move the freeing of it
to the point after the removal completion has been completed at which
it cannot be accessed any more. |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: fnic: Move flush_work initialization out of if block
After commit 379a58caa199 ("scsi: fnic: Move fnic_fnic_flush_tx() to a
work queue"), it can happen that a work item is sent to an uninitialized
work queue. This may has the effect that the item being queued is never
actually queued, and any further actions depending on it will not
proceed.
The following warning is observed while the fnic driver is loaded:
kernel: WARNING: CPU: 11 PID: 0 at ../kernel/workqueue.c:1524 __queue_work+0x373/0x410
kernel: <IRQ>
kernel: queue_work_on+0x3a/0x50
kernel: fnic_wq_copy_cmpl_handler+0x54a/0x730 [fnic 62fbff0c42e7fb825c60a55cde2fb91facb2ed24]
kernel: fnic_isr_msix_wq_copy+0x2d/0x60 [fnic 62fbff0c42e7fb825c60a55cde2fb91facb2ed24]
kernel: __handle_irq_event_percpu+0x36/0x1a0
kernel: handle_irq_event_percpu+0x30/0x70
kernel: handle_irq_event+0x34/0x60
kernel: handle_edge_irq+0x7e/0x1a0
kernel: __common_interrupt+0x3b/0xb0
kernel: common_interrupt+0x58/0xa0
kernel: </IRQ>
It has been observed that this may break the rediscovery of Fibre
Channel devices after a temporary fabric failure.
This patch fixes it by moving the work queue initialization out of
an if block in fnic_probe(). |
| In the Linux kernel, the following vulnerability has been resolved:
net: phy: Remove LED entry from LEDs list on unregister
Commit c938ab4da0eb ("net: phy: Manual remove LEDs to ensure correct
ordering") correctly fixed a problem with using devm_ but missed
removing the LED entry from the LEDs list.
This cause kernel panic on specific scenario where the port for the PHY
is torn down and up and the kmod for the PHY is removed.
On setting the port down the first time, the assosiacted LEDs are
correctly unregistered. The associated kmod for the PHY is now removed.
The kmod is now added again and the port is now put up, the associated LED
are registered again.
On putting the port down again for the second time after these step, the
LED list now have 4 elements. With the first 2 already unregistered
previously and the 2 new one registered again.
This cause a kernel panic as the first 2 element should have been
removed.
Fix this by correctly removing the element when LED is unregistered. |
| In the Linux kernel, the following vulnerability has been resolved:
ice: Fix improper handling of refcount in ice_dpll_init_rclk_pins()
This patch addresses a reference count handling issue in the
ice_dpll_init_rclk_pins() function. The function calls ice_dpll_get_pins(),
which increments the reference count of the relevant resources. However,
if the condition WARN_ON((!vsi || !vsi->netdev)) is met, the function
currently returns an error without properly releasing the resources
acquired by ice_dpll_get_pins(), leading to a reference count leak.
To resolve this, the check has been moved to the top of the function. This
ensures that the function verifies the state before any resources are
acquired, avoiding the need for additional resource management in the
error path.
This bug was identified by an experimental static analysis tool developed
by our team. The tool specializes in analyzing reference count operations
and detecting potential issues where resources are not properly managed.
In this case, the tool flagged the missing release operation as a
potential problem, which led to the development of this patch. |
| In the Linux kernel, the following vulnerability has been resolved:
ice: Fix improper handling of refcount in ice_sriov_set_msix_vec_count()
This patch addresses an issue with improper reference count handling in the
ice_sriov_set_msix_vec_count() function.
First, the function calls ice_get_vf_by_id(), which increments the
reference count of the vf pointer. If the subsequent call to
ice_get_vf_vsi() fails, the function currently returns an error without
decrementing the reference count of the vf pointer, leading to a reference
count leak. The correct behavior, as implemented in this patch, is to
decrement the reference count using ice_put_vf(vf) before returning an
error when vsi is NULL.
Second, the function calls ice_sriov_get_irqs(), which sets
vf->first_vector_idx. If this call returns a negative value, indicating an
error, the function returns an error without decrementing the reference
count of the vf pointer, resulting in another reference count leak. The
patch addresses this by adding a call to ice_put_vf(vf) before returning
an error when vf->first_vector_idx < 0.
This bug was identified by an experimental static analysis tool developed
by our team. The tool specializes in analyzing reference count operations
and identifying potential mismanagement of reference counts. In this case,
the tool flagged the missing decrement operation as a potential issue,
leading to this patch. |