CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
In the Linux kernel, the following vulnerability has been resolved:
PCI: pnv_php: Clean up allocated IRQs on unplug
When the root of a nested PCIe bridge configuration is unplugged, the
pnv_php driver leaked the allocated IRQ resources for the child bridges'
hotplug event notifications, resulting in a panic.
Fix this by walking all child buses and deallocating all its IRQ resources
before calling pci_hp_remove_devices().
Also modify the lifetime of the workqueue at struct pnv_php_slot::wq so
that it is only destroyed in pnv_php_free_slot(), instead of
pnv_php_disable_irq(). This is required since pnv_php_disable_irq() will
now be called by workers triggered by hot unplug interrupts, so the
workqueue needs to stay allocated.
The abridged kernel panic that occurs without this patch is as follows:
WARNING: CPU: 0 PID: 687 at kernel/irq/msi.c:292 msi_device_data_release+0x6c/0x9c
CPU: 0 UID: 0 PID: 687 Comm: bash Not tainted 6.14.0-rc5+ #2
Call Trace:
msi_device_data_release+0x34/0x9c (unreliable)
release_nodes+0x64/0x13c
devres_release_all+0xc0/0x140
device_del+0x2d4/0x46c
pci_destroy_dev+0x5c/0x194
pci_hp_remove_devices+0x90/0x128
pci_hp_remove_devices+0x44/0x128
pnv_php_disable_slot+0x54/0xd4
power_write_file+0xf8/0x18c
pci_slot_attr_store+0x40/0x5c
sysfs_kf_write+0x64/0x78
kernfs_fop_write_iter+0x1b0/0x290
vfs_write+0x3bc/0x50c
ksys_write+0x84/0x140
system_call_exception+0x124/0x230
system_call_vectored_common+0x15c/0x2ec
[bhelgaas: tidy comments] |
In the Linux kernel, the following vulnerability has been resolved:
PCI: pnv_php: Fix surprise plug detection and recovery
The existing PowerNV hotplug code did not handle surprise plug events
correctly, leading to a complete failure of the hotplug system after device
removal and a required reboot to detect new devices.
This comes down to two issues:
1) When a device is surprise removed, often the bridge upstream
port will cause a PE freeze on the PHB. If this freeze is not
cleared, the MSI interrupts from the bridge hotplug notification
logic will not be received by the kernel, stalling all plug events
on all slots associated with the PE.
2) When a device is removed from a slot, regardless of surprise or
programmatic removal, the associated PHB/PE ls left frozen.
If this freeze is not cleared via a fundamental reset, skiboot
is unable to clear the freeze and cannot retrain / rescan the
slot. This also requires a reboot to clear the freeze and redetect
the device in the slot.
Issue the appropriate unfreeze and rescan commands on hotplug events,
and don't oops on hotplug if pci_bus_to_OF_node() returns NULL.
[bhelgaas: tidy comments] |
In the Linux kernel, the following vulnerability has been resolved:
net: drop UFO packets in udp_rcv_segment()
When sending a packet with virtio_net_hdr to tun device, if the gso_type
in virtio_net_hdr is SKB_GSO_UDP and the gso_size is less than udphdr
size, below crash may happen.
------------[ cut here ]------------
kernel BUG at net/core/skbuff.c:4572!
Oops: invalid opcode: 0000 [#1] SMP NOPTI
CPU: 0 UID: 0 PID: 62 Comm: mytest Not tainted 6.16.0-rc7 #203 PREEMPT(voluntary)
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.15.0-1 04/01/2014
RIP: 0010:skb_pull_rcsum+0x8e/0xa0
Code: 00 00 5b c3 cc cc cc cc 8b 93 88 00 00 00 f7 da e8 37 44 38 00 f7 d8 89 83 88 00 00 00 48 8b 83 c8 00 00 00 5b c3 cc cc cc cc <0f> 0b 0f 0b 66 66 2e 0f 1f 84 00 000
RSP: 0018:ffffc900001fba38 EFLAGS: 00000297
RAX: 0000000000000004 RBX: ffff8880040c1000 RCX: ffffc900001fb948
RDX: ffff888003e6d700 RSI: 0000000000000008 RDI: ffff88800411a062
RBP: ffff8880040c1000 R08: 0000000000000000 R09: 0000000000000001
R10: ffff888003606c00 R11: 0000000000000001 R12: 0000000000000000
R13: ffff888004060900 R14: ffff888004050000 R15: ffff888004060900
FS: 000000002406d3c0(0000) GS:ffff888084a19000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000020000040 CR3: 0000000004007000 CR4: 00000000000006f0
Call Trace:
<TASK>
udp_queue_rcv_one_skb+0x176/0x4b0 net/ipv4/udp.c:2445
udp_queue_rcv_skb+0x155/0x1f0 net/ipv4/udp.c:2475
udp_unicast_rcv_skb+0x71/0x90 net/ipv4/udp.c:2626
__udp4_lib_rcv+0x433/0xb00 net/ipv4/udp.c:2690
ip_protocol_deliver_rcu+0xa6/0x160 net/ipv4/ip_input.c:205
ip_local_deliver_finish+0x72/0x90 net/ipv4/ip_input.c:233
ip_sublist_rcv_finish+0x5f/0x70 net/ipv4/ip_input.c:579
ip_sublist_rcv+0x122/0x1b0 net/ipv4/ip_input.c:636
ip_list_rcv+0xf7/0x130 net/ipv4/ip_input.c:670
__netif_receive_skb_list_core+0x21d/0x240 net/core/dev.c:6067
netif_receive_skb_list_internal+0x186/0x2b0 net/core/dev.c:6210
napi_complete_done+0x78/0x180 net/core/dev.c:6580
tun_get_user+0xa63/0x1120 drivers/net/tun.c:1909
tun_chr_write_iter+0x65/0xb0 drivers/net/tun.c:1984
vfs_write+0x300/0x420 fs/read_write.c:593
ksys_write+0x60/0xd0 fs/read_write.c:686
do_syscall_64+0x50/0x1c0 arch/x86/entry/syscall_64.c:63
</TASK>
To trigger gso segment in udp_queue_rcv_skb(), we should also set option
UDP_ENCAP_ESPINUDP to enable udp_sk(sk)->encap_rcv. When the encap_rcv
hook return 1 in udp_queue_rcv_one_skb(), udp_csum_pull_header() will try
to pull udphdr, but the skb size has been segmented to gso size, which
leads to this crash.
Previous commit cf329aa42b66 ("udp: cope with UDP GRO packet misdirection")
introduces segmentation in UDP receive path only for GRO, which was never
intended to be used for UFO, so drop UFO packets in udp_rcv_segment(). |
In the Linux kernel, the following vulnerability has been resolved:
md: make rdev_addable usable for rcu mode
Our testcase trigger panic:
BUG: kernel NULL pointer dereference, address: 00000000000000e0
...
Oops: Oops: 0000 [#1] SMP NOPTI
CPU: 2 UID: 0 PID: 85 Comm: kworker/2:1 Not tainted 6.16.0+ #94
PREEMPT(none)
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS
1.16.1-2.fc37 04/01/2014
Workqueue: md_misc md_start_sync
RIP: 0010:rdev_addable+0x4d/0xf0
...
Call Trace:
<TASK>
md_start_sync+0x329/0x480
process_one_work+0x226/0x6d0
worker_thread+0x19e/0x340
kthread+0x10f/0x250
ret_from_fork+0x14d/0x180
ret_from_fork_asm+0x1a/0x30
</TASK>
Modules linked in: raid10
CR2: 00000000000000e0
---[ end trace 0000000000000000 ]---
RIP: 0010:rdev_addable+0x4d/0xf0
md_spares_need_change in md_start_sync will call rdev_addable which
protected by rcu_read_lock/rcu_read_unlock. This rcu context will help
protect rdev won't be released, but rdev->mddev will be set to NULL
before we call synchronize_rcu in md_kick_rdev_from_array. Fix this by
using READ_ONCE and check does rdev->mddev still alive. |
In the Linux kernel, the following vulnerability has been resolved:
zloop: fix KASAN use-after-free of tag set
When a zoned loop device, or zloop device, is removed, KASAN enabled
kernel reports "BUG KASAN use-after-free" in blk_mq_free_tag_set(). The
BUG happens because zloop_ctl_remove() calls put_disk(), which invokes
zloop_free_disk(). The zloop_free_disk() frees the memory allocated for
the zlo pointer. However, after the memory is freed, zloop_ctl_remove()
calls blk_mq_free_tag_set(&zlo->tag_set), which accesses the freed zlo.
Hence the KASAN use-after-free.
zloop_ctl_remove()
put_disk(zlo->disk)
put_device()
kobject_put()
...
zloop_free_disk()
kvfree(zlo)
blk_mq_free_tag_set(&zlo->tag_set)
To avoid the BUG, move the call to blk_mq_free_tag_set(&zlo->tag_set)
from zloop_ctl_remove() into zloop_free_disk(). This ensures that
the tag_set is freed before the call to kvfree(zlo). |
In the Linux kernel, the following vulnerability has been resolved:
media: ti: j721e-csi2rx: fix list_del corruption
If ti_csi2rx_start_dma() fails in ti_csi2rx_dma_callback(), the buffer is
marked done with VB2_BUF_STATE_ERROR but is not removed from the DMA queue.
This causes the same buffer to be retried in the next iteration, resulting
in a double list_del() and eventual list corruption.
Fix this by removing the buffer from the queue before calling
vb2_buffer_done() on error.
This resolves a crash due to list_del corruption:
[ 37.811243] j721e-csi2rx 30102000.ticsi2rx: Failed to queue the next buffer for DMA
[ 37.832187] slab kmalloc-2k start ffff00000255b000 pointer offset 1064 size 2048
[ 37.839761] list_del corruption. next->prev should be ffff00000255bc28, but was ffff00000255d428. (next=ffff00000255b428)
[ 37.850799] ------------[ cut here ]------------
[ 37.855424] kernel BUG at lib/list_debug.c:65!
[ 37.859876] Internal error: Oops - BUG: 00000000f2000800 [#1] SMP
[ 37.866061] Modules linked in: i2c_dev usb_f_rndis u_ether libcomposite dwc3 udc_core usb_common aes_ce_blk aes_ce_cipher ghash_ce gf128mul sha1_ce cpufreq_dt dwc3_am62 phy_gmii_sel sa2ul
[ 37.882830] CPU: 0 UID: 0 PID: 0 Comm: swapper/0 Not tainted 6.16.0-rc3+ #28 VOLUNTARY
[ 37.890851] Hardware name: Bosch STLA-GSRV2-B0 (DT)
[ 37.895737] pstate: 600000c5 (nZCv daIF -PAN -UAO -TCO -DIT -SSBS BTYPE=--)
[ 37.902703] pc : __list_del_entry_valid_or_report+0xdc/0x114
[ 37.908390] lr : __list_del_entry_valid_or_report+0xdc/0x114
[ 37.914059] sp : ffff800080003db0
[ 37.917375] x29: ffff800080003db0 x28: 0000000000000007 x27: ffff800080e50000
[ 37.924521] x26: 0000000000000000 x25: ffff0000016abb50 x24: dead000000000122
[ 37.931666] x23: ffff0000016abb78 x22: ffff0000016ab080 x21: ffff800080003de0
[ 37.938810] x20: ffff00000255bc00 x19: ffff00000255b800 x18: 000000000000000a
[ 37.945956] x17: 20747562202c3832 x16: 6362353532303030 x15: 0720072007200720
[ 37.953101] x14: 0720072007200720 x13: 0720072007200720 x12: 00000000ffffffea
[ 37.960248] x11: ffff800080003b18 x10: 00000000ffffefff x9 : ffff800080f5b568
[ 37.967396] x8 : ffff800080f5b5c0 x7 : 0000000000017fe8 x6 : c0000000ffffefff
[ 37.974542] x5 : ffff00000fea6688 x4 : 0000000000000000 x3 : 0000000000000000
[ 37.981686] x2 : 0000000000000000 x1 : ffff800080ef2b40 x0 : 000000000000006d
[ 37.988832] Call trace:
[ 37.991281] __list_del_entry_valid_or_report+0xdc/0x114 (P)
[ 37.996959] ti_csi2rx_dma_callback+0x84/0x1c4
[ 38.001419] udma_vchan_complete+0x1e0/0x344
[ 38.005705] tasklet_action_common+0x118/0x310
[ 38.010163] tasklet_action+0x30/0x3c
[ 38.013832] handle_softirqs+0x10c/0x2e0
[ 38.017761] __do_softirq+0x14/0x20
[ 38.021256] ____do_softirq+0x10/0x20
[ 38.024931] call_on_irq_stack+0x24/0x60
[ 38.028873] do_softirq_own_stack+0x1c/0x40
[ 38.033064] __irq_exit_rcu+0x130/0x15c
[ 38.036909] irq_exit_rcu+0x10/0x20
[ 38.040403] el1_interrupt+0x38/0x60
[ 38.043987] el1h_64_irq_handler+0x18/0x24
[ 38.048091] el1h_64_irq+0x6c/0x70
[ 38.051501] default_idle_call+0x34/0xe0 (P)
[ 38.055783] do_idle+0x1f8/0x250
[ 38.059021] cpu_startup_entry+0x34/0x3c
[ 38.062951] rest_init+0xb4/0xc0
[ 38.066186] console_on_rootfs+0x0/0x6c
[ 38.070031] __primary_switched+0x88/0x90
[ 38.074059] Code: b00037e0 91378000 f9400462 97e9bf49 (d4210000)
[ 38.080168] ---[ end trace 0000000000000000 ]---
[ 38.084795] Kernel panic - not syncing: Oops - BUG: Fatal exception in interrupt
[ 38.092197] SMP: stopping secondary CPUs
[ 38.096139] Kernel Offset: disabled
[ 38.099631] CPU features: 0x0000,00002000,02000801,0400420b
[ 38.105202] Memory Limit: none
[ 38.108260] ---[ end Kernel panic - not syncing: Oops - BUG: Fatal exception in interrupt ]--- |
In the Linux kernel, the following vulnerability has been resolved:
vsock: Do not allow binding to VMADDR_PORT_ANY
It is possible for a vsock to autobind to VMADDR_PORT_ANY. This can
cause a use-after-free when a connection is made to the bound socket.
The socket returned by accept() also has port VMADDR_PORT_ANY but is not
on the list of unbound sockets. Binding it will result in an extra
refcount decrement similar to the one fixed in fcdd2242c023 (vsock: Keep
the binding until socket destruction).
Modify the check in __vsock_bind_connectible() to also prevent binding
to VMADDR_PORT_ANY. |
In the Linux kernel, the following vulnerability has been resolved:
net/packet: fix a race in packet_set_ring() and packet_notifier()
When packet_set_ring() releases po->bind_lock, another thread can
run packet_notifier() and process an NETDEV_UP event.
This race and the fix are both similar to that of commit 15fe076edea7
("net/packet: fix a race in packet_bind() and packet_notifier()").
There too the packet_notifier NETDEV_UP event managed to run while a
po->bind_lock critical section had to be temporarily released. And
the fix was similarly to temporarily set po->num to zero to keep
the socket unhooked until the lock is retaken.
The po->bind_lock in packet_set_ring and packet_notifier precede the
introduction of git history. |
In the Linux kernel, the following vulnerability has been resolved:
tls: handle data disappearing from under the TLS ULP
TLS expects that it owns the receive queue of the TCP socket.
This cannot be guaranteed in case the reader of the TCP socket
entered before the TLS ULP was installed, or uses some non-standard
read API (eg. zerocopy ones). Replace the WARN_ON() and a buggy
early exit (which leaves anchor pointing to a freed skb) with real
error handling. Wipe the parsing state and tell the reader to retry.
We already reload the anchor every time we (re)acquire the socket lock,
so the only condition we need to avoid is an out of bounds read
(not having enough bytes in the socket for previously parsed record len).
If some data was read from under TLS but there's enough in the queue
we'll reload and decrypt what is most likely not a valid TLS record.
Leading to some undefined behavior from TLS perspective (corrupting
a stream? missing an alert? missing an attack?) but no kernel crash
should take place. |
In the Linux kernel, the following vulnerability has been resolved:
fs/ntfs3: cancle set bad inode after removing name fails
The reproducer uses a file0 on a ntfs3 file system with a corrupted i_link.
When renaming, the file0's inode is marked as a bad inode because the file
name cannot be deleted.
The underlying bug is that make_bad_inode() is called on a live inode.
In some cases it's "icache lookup finds a normal inode, d_splice_alias()
is called to attach it to dentry, while another thread decides to call
make_bad_inode() on it - that would evict it from icache, but we'd already
found it there earlier".
In some it's outright "we have an inode attached to dentry - that's how we
got it in the first place; let's call make_bad_inode() on it just for shits
and giggles". |
In the Linux kernel, the following vulnerability has been resolved:
eventpoll: Fix semi-unbounded recursion
Ensure that epoll instances can never form a graph deeper than
EP_MAX_NESTS+1 links.
Currently, ep_loop_check_proc() ensures that the graph is loop-free and
does some recursion depth checks, but those recursion depth checks don't
limit the depth of the resulting tree for two reasons:
- They don't look upwards in the tree.
- If there are multiple downwards paths of different lengths, only one of
the paths is actually considered for the depth check since commit
28d82dc1c4ed ("epoll: limit paths").
Essentially, the current recursion depth check in ep_loop_check_proc() just
serves to prevent it from recursing too deeply while checking for loops.
A more thorough check is done in reverse_path_check() after the new graph
edge has already been created; this checks, among other things, that no
paths going upwards from any non-epoll file with a length of more than 5
edges exist. However, this check does not apply to non-epoll files.
As a result, it is possible to recurse to a depth of at least roughly 500,
tested on v6.15. (I am unsure if deeper recursion is possible; and this may
have changed with commit 8c44dac8add7 ("eventpoll: Fix priority inversion
problem").)
To fix it:
1. In ep_loop_check_proc(), note the subtree depth of each visited node,
and use subtree depths for the total depth calculation even when a subtree
has already been visited.
2. Add ep_get_upwards_depth_proc() for similarly determining the maximum
depth of an upwards walk.
3. In ep_loop_check(), use these values to limit the total path length
between epoll nodes to EP_MAX_NESTS edges. |
In the Linux kernel, the following vulnerability has been resolved:
staging: gpib: fix unset padding field copy back to userspace
The introduction of a padding field in the gpib_board_info_ioctl is
showing up as initialized data on the stack frame being copyied back
to userspace in function board_info_ioctl. The simplest fix is to
initialize the entire struct to zero to ensure all unassigned padding
fields are zero'd before being copied back to userspace. |
In the Linux kernel, the following vulnerability has been resolved:
staging: fbtft: fix potential memory leak in fbtft_framebuffer_alloc()
In the error paths after fb_info structure is successfully allocated,
the memory allocated in fb_deferred_io_init() for info->pagerefs is not
freed. Fix that by adding the cleanup function on the error path. |
In the Linux kernel, the following vulnerability has been resolved:
powercap: dtpm_cpu: Fix NULL pointer dereference in get_pd_power_uw()
The get_pd_power_uw() function can crash with a NULL pointer dereference
when em_cpu_get() returns NULL. This occurs when a CPU becomes impossible
during runtime, causing get_cpu_device() to return NULL, which propagates
through em_cpu_get() and leads to a crash when em_span_cpus() dereferences
the NULL pointer.
Add a NULL check after em_cpu_get() and return 0 if unavailable,
matching the existing fallback behavior in __dtpm_cpu_setup().
[ rjw: Drop an excess empty code line ] |
In the Linux kernel, the following vulnerability has been resolved:
PM / devfreq: Check governor before using governor->name
Commit 96ffcdf239de ("PM / devfreq: Remove redundant governor_name from
struct devfreq") removes governor_name and uses governor->name to replace
it. But devfreq->governor may be NULL and directly using
devfreq->governor->name may cause null pointer exception. Move the check of
governor to before using governor->name. |
In the Linux kernel, the following vulnerability has been resolved:
bpf, ktls: Fix data corruption when using bpf_msg_pop_data() in ktls
When sending plaintext data, we initially calculated the corresponding
ciphertext length. However, if we later reduced the plaintext data length
via socket policy, we failed to recalculate the ciphertext length.
This results in transmitting buffers containing uninitialized data during
ciphertext transmission.
This causes uninitialized bytes to be appended after a complete
"Application Data" packet, leading to errors on the receiving end when
parsing TLS record. |
In the Linux kernel, the following vulnerability has been resolved:
bpf: handle jset (if a & b ...) as a jump in CFG computation
BPF_JSET is a conditional jump and currently verifier.c:can_jump()
does not know about that. This can lead to incorrect live registers
and SCC computation.
E.g. in the following example:
1: r0 = 1;
2: r2 = 2;
3: if r1 & 0x7 goto +1;
4: exit;
5: r0 = r2;
6: exit;
W/o this fix insn_successors(3) will return only (4), a jump to (5)
would be missed and r2 won't be marked as alive at (3). |
In the Linux kernel, the following vulnerability has been resolved:
wifi: ath12k: Avoid accessing uninitialized arvif->ar during beacon miss
During beacon miss handling, ath12k driver iterates over active virtual
interfaces (vifs) and attempts to access the radio object (ar) via
arvif->deflink->ar.
However, after commit aa80f12f3bed ("wifi: ath12k: defer vdev creation for
MLO"), arvif is linked to a radio only after vdev creation, typically when
a channel is assigned or a scan is requested.
For P2P capable devices, a default P2P interface is created by
wpa_supplicant along with regular station interfaces, these serve as dummy
interfaces for P2P-capable stations, lack an associated netdev and initiate
frequent scans to discover neighbor p2p devices. When a scan is initiated
on such P2P vifs, driver selects destination radio (ar) based on scan
frequency, creates a scan vdev, and attaches arvif to the radio. Once the
scan completes or is aborted, the scan vdev is deleted, detaching arvif
from the radio and leaving arvif->ar uninitialized.
While handling beacon miss for station interfaces, P2P interface is also
encountered in the vif iteration and ath12k_mac_handle_beacon_miss_iter()
tries to dereference the uninitialized arvif->deflink->ar.
Fix this by verifying that vdev is created for the arvif before accessing
its ar during beacon miss handling and similar vif iterator callbacks.
==========================================================================
wlp6s0: detected beacon loss from AP (missed 7 beacons) - probing
KASAN: null-ptr-deref in range [0x0000000000000010-0x0000000000000017]
CPU: 5 UID: 0 PID: 0 Comm: swapper/5 Not tainted 6.16.0-rc1-wt-ath+ #2 PREEMPT(full)
RIP: 0010:ath12k_mac_handle_beacon_miss_iter+0xb5/0x1a0 [ath12k]
Call Trace:
__iterate_interfaces+0x11a/0x410 [mac80211]
ieee80211_iterate_active_interfaces_atomic+0x61/0x140 [mac80211]
ath12k_mac_handle_beacon_miss+0xa1/0xf0 [ath12k]
ath12k_roam_event+0x393/0x560 [ath12k]
ath12k_wmi_op_rx+0x1486/0x28c0 [ath12k]
ath12k_htc_process_trailer.isra.0+0x2fb/0x620 [ath12k]
ath12k_htc_rx_completion_handler+0x448/0x830 [ath12k]
ath12k_ce_recv_process_cb+0x549/0x9e0 [ath12k]
ath12k_ce_per_engine_service+0xbe/0xf0 [ath12k]
ath12k_pci_ce_workqueue+0x69/0x120 [ath12k]
process_one_work+0xe3a/0x1430
Tested-on: QCN9274 hw2.0 PCI WLAN.WBE.1.4.1-00199-QCAHKSWPL_SILICONZ-1
Tested-on: WCN7850 hw2.0 PCI WLAN.HMT.1.1.c5-00284.1-QCAHMTSWPL_V1.0_V2.0_SILICONZ-3 |
In the Linux kernel, the following vulnerability has been resolved:
wifi: ath12k: Pass ab pointer directly to ath12k_dp_tx_get_encap_type()
In ath12k_dp_tx_get_encap_type(), the arvif parameter is only used to
retrieve the ab pointer. In vdev delete sequence the arvif->ar could
become NULL and that would trigger kernel panic.
Since the caller ath12k_dp_tx() already has a valid ab pointer, pass it
directly to avoid panic and unnecessary dereferencing.
PC points to "ath12k_dp_tx+0x228/0x988 [ath12k]"
LR points to "ath12k_dp_tx+0xc8/0x988 [ath12k]".
The Backtrace obtained is as follows:
ath12k_dp_tx+0x228/0x988 [ath12k]
ath12k_mac_tx_check_max_limit+0x608/0x920 [ath12k]
ieee80211_process_measurement_req+0x320/0x348 [mac80211]
ieee80211_tx_dequeue+0x9ac/0x1518 [mac80211]
ieee80211_tx_dequeue+0xb14/0x1518 [mac80211]
ieee80211_tx_prepare_skb+0x224/0x254 [mac80211]
ieee80211_xmit+0xec/0x100 [mac80211]
__ieee80211_subif_start_xmit+0xc50/0xf40 [mac80211]
ieee80211_subif_start_xmit+0x2e8/0x308 [mac80211]
netdev_start_xmit+0x150/0x18c
dev_hard_start_xmit+0x74/0xc0
Tested-on: QCN9274 hw2.0 PCI WLAN.WBE.1.3.1-00173-QCAHKSWPL_SILICONZ-1 |
In the Linux kernel, the following vulnerability has been resolved:
wifi: rtl818x: Kill URBs before clearing tx status queue
In rtl8187_stop() move the call of usb_kill_anchored_urbs() before clearing
b_tx_status.queue. This change prevents callbacks from using already freed
skb due to anchor was not killed before freeing such skb.
BUG: kernel NULL pointer dereference, address: 0000000000000080
#PF: supervisor read access in kernel mode
#PF: error_code(0x0000) - not-present page
PGD 0 P4D 0
Oops: Oops: 0000 [#1] SMP NOPTI
CPU: 7 UID: 0 PID: 0 Comm: swapper/7 Not tainted 6.15.0 #8 PREEMPT(voluntary)
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 0.0.0 02/06/2015
RIP: 0010:ieee80211_tx_status_irqsafe+0x21/0xc0 [mac80211]
Call Trace:
<IRQ>
rtl8187_tx_cb+0x116/0x150 [rtl8187]
__usb_hcd_giveback_urb+0x9d/0x120
usb_giveback_urb_bh+0xbb/0x140
process_one_work+0x19b/0x3c0
bh_worker+0x1a7/0x210
tasklet_action+0x10/0x30
handle_softirqs+0xf0/0x340
__irq_exit_rcu+0xcd/0xf0
common_interrupt+0x85/0xa0
</IRQ>
Tested on RTL8187BvE device.
Found by Linux Verification Center (linuxtesting.org) with SVACE. |