Search

Search Results (323364 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2025-65590 1 Nopcommerce 1 Nopcommerce 2025-12-18 5.4 Medium
nopCommerce 4.90.0 is vulnerable to Cross Site Scripting (XSS) via the Blog posts functionality in the Content Management area.
CVE-2025-68310 1 Linux 1 Linux Kernel 2025-12-18 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: s390/pci: Avoid deadlock between PCI error recovery and mlx5 crdump Do not block PCI config accesses through pci_cfg_access_lock() when executing the s390 variant of PCI error recovery: Acquire just device_lock() instead of pci_dev_lock() as powerpc's EEH and generig PCI AER processing do. During error recovery testing a pair of tasks was reported to be hung: mlx5_core 0000:00:00.1: mlx5_health_try_recover:338:(pid 5553): health recovery flow aborted, PCI reads still not working INFO: task kmcheck:72 blocked for more than 122 seconds. Not tainted 5.14.0-570.12.1.bringup7.el9.s390x #1 "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. task:kmcheck state:D stack:0 pid:72 tgid:72 ppid:2 flags:0x00000000 Call Trace: [<000000065256f030>] __schedule+0x2a0/0x590 [<000000065256f356>] schedule+0x36/0xe0 [<000000065256f572>] schedule_preempt_disabled+0x22/0x30 [<0000000652570a94>] __mutex_lock.constprop.0+0x484/0x8a8 [<000003ff800673a4>] mlx5_unload_one+0x34/0x58 [mlx5_core] [<000003ff8006745c>] mlx5_pci_err_detected+0x94/0x140 [mlx5_core] [<0000000652556c5a>] zpci_event_attempt_error_recovery+0xf2/0x398 [<0000000651b9184a>] __zpci_event_error+0x23a/0x2c0 INFO: task kworker/u1664:6:1514 blocked for more than 122 seconds. Not tainted 5.14.0-570.12.1.bringup7.el9.s390x #1 "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. task:kworker/u1664:6 state:D stack:0 pid:1514 tgid:1514 ppid:2 flags:0x00000000 Workqueue: mlx5_health0000:00:00.0 mlx5_fw_fatal_reporter_err_work [mlx5_core] Call Trace: [<000000065256f030>] __schedule+0x2a0/0x590 [<000000065256f356>] schedule+0x36/0xe0 [<0000000652172e28>] pci_wait_cfg+0x80/0xe8 [<0000000652172f94>] pci_cfg_access_lock+0x74/0x88 [<000003ff800916b6>] mlx5_vsc_gw_lock+0x36/0x178 [mlx5_core] [<000003ff80098824>] mlx5_crdump_collect+0x34/0x1c8 [mlx5_core] [<000003ff80074b62>] mlx5_fw_fatal_reporter_dump+0x6a/0xe8 [mlx5_core] [<0000000652512242>] devlink_health_do_dump.part.0+0x82/0x168 [<0000000652513212>] devlink_health_report+0x19a/0x230 [<000003ff80075a12>] mlx5_fw_fatal_reporter_err_work+0xba/0x1b0 [mlx5_core] No kernel log of the exact same error with an upstream kernel is available - but the very same deadlock situation can be constructed there, too: - task: kmcheck mlx5_unload_one() tries to acquire devlink lock while the PCI error recovery code has set pdev->block_cfg_access by way of pci_cfg_access_lock() - task: kworker mlx5_crdump_collect() tries to set block_cfg_access through pci_cfg_access_lock() while devlink_health_report() had acquired the devlink lock. A similar deadlock situation can be reproduced by requesting a crdump with > devlink health dump show pci/<BDF> reporter fw_fatal while PCI error recovery is executed on the same <BDF> physical function by mlx5_core's pci_error_handlers. On s390 this can be injected with > zpcictl --reset-fw <BDF> Tests with this patch failed to reproduce that second deadlock situation, the devlink command is rejected with "kernel answers: Permission denied" - and we get a kernel log message of: mlx5_core 1ed0:00:00.1: mlx5_crdump_collect:50:(pid 254382): crdump: failed to lock vsc gw err -5 because the config read of VSC_SEMAPHORE is rejected by the underlying hardware. Two prior attempts to address this issue have been discussed and ultimately rejected [see link], with the primary argument that s390's implementation of PCI error recovery is imposing restrictions that neither powerpc's EEH nor PCI AER handling need. Tests show that PCI error recovery on s390 is running to completion even without blocking access to PCI config space.
CVE-2025-63414 1 Allsky 1 Allsky 2025-12-18 10 Critical
A Path Traversal vulnerability in the Allsky WebUI version v2024.12.06_06 allows an unauthenticated remote attacker to achieve arbitrary command execution. By sending a crafted HTTP request to the /html/execute.php endpoint with a malicious payload in the id parameter, an attacker can execute arbitrary commands on the underlying operating system, leading to full remote code execution (RCE).
CVE-2025-68297 1 Linux 1 Linux Kernel 2025-12-18 7.0 High
In the Linux kernel, the following vulnerability has been resolved: ceph: fix crash in process_v2_sparse_read() for encrypted directories The crash in process_v2_sparse_read() for fscrypt-encrypted directories has been reported. Issue takes place for Ceph msgr2 protocol in secure mode. It can be reproduced by the steps: sudo mount -t ceph :/ /mnt/cephfs/ -o name=admin,fs=cephfs,ms_mode=secure (1) mkdir /mnt/cephfs/fscrypt-test-3 (2) cp area_decrypted.tar /mnt/cephfs/fscrypt-test-3 (3) fscrypt encrypt --source=raw_key --key=./my.key /mnt/cephfs/fscrypt-test-3 (4) fscrypt lock /mnt/cephfs/fscrypt-test-3 (5) fscrypt unlock --key=my.key /mnt/cephfs/fscrypt-test-3 (6) cat /mnt/cephfs/fscrypt-test-3/area_decrypted.tar (7) Issue has been triggered [ 408.072247] ------------[ cut here ]------------ [ 408.072251] WARNING: CPU: 1 PID: 392 at net/ceph/messenger_v2.c:865 ceph_con_v2_try_read+0x4b39/0x72f0 [ 408.072267] Modules linked in: intel_rapl_msr intel_rapl_common intel_uncore_frequency_common intel_pmc_core pmt_telemetry pmt_discovery pmt_class intel_pmc_ssram_telemetry intel_vsec kvm_intel joydev kvm irqbypass polyval_clmulni ghash_clmulni_intel aesni_intel rapl input_leds psmouse serio_raw i2c_piix4 vga16fb bochs vgastate i2c_smbus floppy mac_hid qemu_fw_cfg pata_acpi sch_fq_codel rbd msr parport_pc ppdev lp parport efi_pstore [ 408.072304] CPU: 1 UID: 0 PID: 392 Comm: kworker/1:3 Not tainted 6.17.0-rc7+ [ 408.072307] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.17.0-5.fc42 04/01/2014 [ 408.072310] Workqueue: ceph-msgr ceph_con_workfn [ 408.072314] RIP: 0010:ceph_con_v2_try_read+0x4b39/0x72f0 [ 408.072317] Code: c7 c1 20 f0 d4 ae 50 31 d2 48 c7 c6 60 27 d5 ae 48 c7 c7 f8 8e 6f b0 68 60 38 d5 ae e8 00 47 61 fe 48 83 c4 18 e9 ac fc ff ff <0f> 0b e9 06 fe ff ff 4c 8b 9d 98 fd ff ff 0f 84 64 e7 ff ff 89 85 [ 408.072319] RSP: 0018:ffff88811c3e7a30 EFLAGS: 00010246 [ 408.072322] RAX: ffffed1024874c6f RBX: ffffea00042c2b40 RCX: 0000000000000f38 [ 408.072324] RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000000 [ 408.072325] RBP: ffff88811c3e7ca8 R08: 0000000000000000 R09: 00000000000000c8 [ 408.072326] R10: 00000000000000c8 R11: 0000000000000000 R12: 00000000000000c8 [ 408.072327] R13: dffffc0000000000 R14: ffff8881243a6030 R15: 0000000000003000 [ 408.072329] FS: 0000000000000000(0000) GS:ffff88823eadf000(0000) knlGS:0000000000000000 [ 408.072331] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 408.072332] CR2: 000000c0003c6000 CR3: 000000010c106005 CR4: 0000000000772ef0 [ 408.072336] PKRU: 55555554 [ 408.072337] Call Trace: [ 408.072338] <TASK> [ 408.072340] ? sched_clock_noinstr+0x9/0x10 [ 408.072344] ? __pfx_ceph_con_v2_try_read+0x10/0x10 [ 408.072347] ? _raw_spin_unlock+0xe/0x40 [ 408.072349] ? finish_task_switch.isra.0+0x15d/0x830 [ 408.072353] ? __kasan_check_write+0x14/0x30 [ 408.072357] ? mutex_lock+0x84/0xe0 [ 408.072359] ? __pfx_mutex_lock+0x10/0x10 [ 408.072361] ceph_con_workfn+0x27e/0x10e0 [ 408.072364] ? metric_delayed_work+0x311/0x2c50 [ 408.072367] process_one_work+0x611/0xe20 [ 408.072371] ? __kasan_check_write+0x14/0x30 [ 408.072373] worker_thread+0x7e3/0x1580 [ 408.072375] ? __pfx__raw_spin_lock_irqsave+0x10/0x10 [ 408.072378] ? __pfx_worker_thread+0x10/0x10 [ 408.072381] kthread+0x381/0x7a0 [ 408.072383] ? __pfx__raw_spin_lock_irq+0x10/0x10 [ 408.072385] ? __pfx_kthread+0x10/0x10 [ 408.072387] ? __kasan_check_write+0x14/0x30 [ 408.072389] ? recalc_sigpending+0x160/0x220 [ 408.072392] ? _raw_spin_unlock_irq+0xe/0x50 [ 408.072394] ? calculate_sigpending+0x78/0xb0 [ 408.072395] ? __pfx_kthread+0x10/0x10 [ 408.072397] ret_from_fork+0x2b6/0x380 [ 408.072400] ? __pfx_kthread+0x10/0x10 [ 408.072402] ret_from_fork_asm+0x1a/0x30 [ 408.072406] </TASK> [ 408.072407] ---[ end trace 0000000000000000 ]--- [ 408.072418] Oops: general protection fault, probably for non-canonical address 0xdffffc00000000 ---truncated---
CVE-2025-68269 1 Jetbrains 1 Intellij Idea 2025-12-18 5.4 Medium
In JetBrains IntelliJ IDEA before 2025.3 missing confirmation allowed opening of untrusted remote projects over SSH
CVE-2025-68225 1 Linux 1 Linux Kernel 2025-12-18 N/A
In the Linux kernel, the following vulnerability has been resolved: lib/test_kho: check if KHO is enabled We must check whether KHO is enabled prior to issuing KHO commands, otherwise KHO internal data structures are not initialized.
CVE-2025-68226 1 Linux 1 Linux Kernel 2025-12-18 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: smb: client: fix incomplete backport in cfids_invalidation_worker() The previous commit bdb596ceb4b7 ("smb: client: fix potential UAF in smb2_close_cached_fid()") was an incomplete backport and missed one kref_put() call in cfids_invalidation_worker() that should have been converted to close_cached_dir().
CVE-2025-68231 1 Linux 1 Linux Kernel 2025-12-18 7.0 High
In the Linux kernel, the following vulnerability has been resolved: mm/mempool: fix poisoning order>0 pages with HIGHMEM The kernel test has reported: BUG: unable to handle page fault for address: fffba000 #PF: supervisor write access in kernel mode #PF: error_code(0x0002) - not-present page *pde = 03171067 *pte = 00000000 Oops: Oops: 0002 [#1] CPU: 0 UID: 0 PID: 1 Comm: swapper/0 Tainted: G T 6.18.0-rc2-00031-gec7f31b2a2d3 #1 NONE a1d066dfe789f54bc7645c7989957d2bdee593ca Tainted: [T]=RANDSTRUCT Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.3-debian-1.16.3-2 04/01/2014 EIP: memset (arch/x86/include/asm/string_32.h:168 arch/x86/lib/memcpy_32.c:17) Code: a5 8b 4d f4 83 e1 03 74 02 f3 a4 83 c4 04 5e 5f 5d 2e e9 73 41 01 00 90 90 90 3e 8d 74 26 00 55 89 e5 57 56 89 c6 89 d0 89 f7 <f3> aa 89 f0 5e 5f 5d 2e e9 53 41 01 00 cc cc cc 55 89 e5 53 57 56 EAX: 0000006b EBX: 00000015 ECX: 001fefff EDX: 0000006b ESI: fffb9000 EDI: fffba000 EBP: c611fbf0 ESP: c611fbe8 DS: 007b ES: 007b FS: 0000 GS: 0000 SS: 0068 EFLAGS: 00010287 CR0: 80050033 CR2: fffba000 CR3: 0316e000 CR4: 00040690 Call Trace: poison_element (mm/mempool.c:83 mm/mempool.c:102) mempool_init_node (mm/mempool.c:142 mm/mempool.c:226) mempool_init_noprof (mm/mempool.c:250 (discriminator 1)) ? mempool_alloc_pages (mm/mempool.c:640) bio_integrity_initfn (block/bio-integrity.c:483 (discriminator 8)) ? mempool_alloc_pages (mm/mempool.c:640) do_one_initcall (init/main.c:1283) Christoph found out this is due to the poisoning code not dealing properly with CONFIG_HIGHMEM because only the first page is mapped but then the whole potentially high-order page is accessed. We could give up on HIGHMEM here, but it's straightforward to fix this with a loop that's mapping, poisoning or checking and unmapping individual pages.
CVE-2025-34288 1 Nagios 2 Nagios Xi, Xi 2025-12-18 N/A
Nagios XI versions prior to 2026R1.1 are vulnerable to local privilege escalation due to an unsafe interaction between sudo permissions and application file permissions. A user‑accessible maintenance script may be executed as root via sudo and includes an application file that is writable by a lower‑privileged user. A local attacker with access to the application account can modify this file to introduce malicious code, which is then executed with elevated privileges when the script is run. Successful exploitation results in arbitrary code execution as the root user.
CVE-2025-68285 1 Linux 1 Linux Kernel 2025-12-18 7.0 High
In the Linux kernel, the following vulnerability has been resolved: libceph: fix potential use-after-free in have_mon_and_osd_map() The wait loop in __ceph_open_session() can race with the client receiving a new monmap or osdmap shortly after the initial map is received. Both ceph_monc_handle_map() and handle_one_map() install a new map immediately after freeing the old one kfree(monc->monmap); monc->monmap = monmap; ceph_osdmap_destroy(osdc->osdmap); osdc->osdmap = newmap; under client->monc.mutex and client->osdc.lock respectively, but because neither is taken in have_mon_and_osd_map() it's possible for client->monc.monmap->epoch and client->osdc.osdmap->epoch arms in client->monc.monmap && client->monc.monmap->epoch && client->osdc.osdmap && client->osdc.osdmap->epoch; condition to dereference an already freed map. This happens to be reproducible with generic/395 and generic/397 with KASAN enabled: BUG: KASAN: slab-use-after-free in have_mon_and_osd_map+0x56/0x70 Read of size 4 at addr ffff88811012d810 by task mount.ceph/13305 CPU: 2 UID: 0 PID: 13305 Comm: mount.ceph Not tainted 6.14.0-rc2-build2+ #1266 ... Call Trace: <TASK> have_mon_and_osd_map+0x56/0x70 ceph_open_session+0x182/0x290 ceph_get_tree+0x333/0x680 vfs_get_tree+0x49/0x180 do_new_mount+0x1a3/0x2d0 path_mount+0x6dd/0x730 do_mount+0x99/0xe0 __do_sys_mount+0x141/0x180 do_syscall_64+0x9f/0x100 entry_SYSCALL_64_after_hwframe+0x76/0x7e </TASK> Allocated by task 13305: ceph_osdmap_alloc+0x16/0x130 ceph_osdc_init+0x27a/0x4c0 ceph_create_client+0x153/0x190 create_fs_client+0x50/0x2a0 ceph_get_tree+0xff/0x680 vfs_get_tree+0x49/0x180 do_new_mount+0x1a3/0x2d0 path_mount+0x6dd/0x730 do_mount+0x99/0xe0 __do_sys_mount+0x141/0x180 do_syscall_64+0x9f/0x100 entry_SYSCALL_64_after_hwframe+0x76/0x7e Freed by task 9475: kfree+0x212/0x290 handle_one_map+0x23c/0x3b0 ceph_osdc_handle_map+0x3c9/0x590 mon_dispatch+0x655/0x6f0 ceph_con_process_message+0xc3/0xe0 ceph_con_v1_try_read+0x614/0x760 ceph_con_workfn+0x2de/0x650 process_one_work+0x486/0x7c0 process_scheduled_works+0x73/0x90 worker_thread+0x1c8/0x2a0 kthread+0x2ec/0x300 ret_from_fork+0x24/0x40 ret_from_fork_asm+0x1a/0x30 Rewrite the wait loop to check the above condition directly with client->monc.mutex and client->osdc.lock taken as appropriate. While at it, improve the timeout handling (previously mount_timeout could be exceeded in case wait_event_interruptible_timeout() slept more than once) and access client->auth_err under client->monc.mutex to match how it's set in finish_auth(). monmap_show() and osdmap_show() now take the respective lock before accessing the map as well.
CVE-2025-68293 1 Linux 1 Linux Kernel 2025-12-18 7.0 High
In the Linux kernel, the following vulnerability has been resolved: mm/huge_memory: fix NULL pointer deference when splitting folio Commit c010d47f107f ("mm: thp: split huge page to any lower order pages") introduced an early check on the folio's order via mapping->flags before proceeding with the split work. This check introduced a bug: for shmem folios in the swap cache and truncated folios, the mapping pointer can be NULL. Accessing mapping->flags in this state leads directly to a NULL pointer dereference. This commit fixes the issue by moving the check for mapping != NULL before any attempt to access mapping->flags.
CVE-2025-68259 1 Linux 1 Linux Kernel 2025-12-18 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: KVM: SVM: Don't skip unrelated instruction if INT3/INTO is replaced When re-injecting a soft interrupt from an INT3, INT0, or (select) INTn instruction, discard the exception and retry the instruction if the code stream is changed (e.g. by a different vCPU) between when the CPU executes the instruction and when KVM decodes the instruction to get the next RIP. As effectively predicted by commit 6ef88d6e36c2 ("KVM: SVM: Re-inject INT3/INTO instead of retrying the instruction"), failure to verify that the correct INTn instruction was decoded can effectively clobber guest state due to decoding the wrong instruction and thus specifying the wrong next RIP. The bug most often manifests as "Oops: int3" panics on static branch checks in Linux guests. Enabling or disabling a static branch in Linux uses the kernel's "text poke" code patching mechanism. To modify code while other CPUs may be executing that code, Linux (temporarily) replaces the first byte of the original instruction with an int3 (opcode 0xcc), then patches in the new code stream except for the first byte, and finally replaces the int3 with the first byte of the new code stream. If a CPU hits the int3, i.e. executes the code while it's being modified, then the guest kernel must look up the RIP to determine how to handle the #BP, e.g. by emulating the new instruction. If the RIP is incorrect, then this lookup fails and the guest kernel panics. The bug reproduces almost instantly by hacking the guest kernel to repeatedly check a static branch[1] while running a drgn script[2] on the host to constantly swap out the memory containing the guest's TSS. [1]: https://gist.github.com/osandov/44d17c51c28c0ac998ea0334edf90b5a [2]: https://gist.github.com/osandov/10e45e45afa29b11e0c7209247afc00b
CVE-2025-48429 1 Grassroots Dicom Project 1 Grassroots Dicom 2025-12-18 7.4 High
An out-of-bounds read vulnerability exists in the RLECodec::DecodeByStreams functionality of Grassroot DICOM 3.024. A specially crafted DICOM file can lead to leaking heap data. An attacker can provide a malicious file to trigger this vulnerability.
CVE-2025-14817 2 Google, Tecno 2 Android, Factory Mode App 2025-12-18 6.5 Medium
The component com.transsion.tranfacmode.entrance.main.MainActivity in com.transsion.tranfacmode has no permission control and can be accessed by third-party apps which can construct intents to directly open adb debugging functionality without user interaction.
CVE-2025-68262 1 Linux 1 Linux Kernel 2025-12-18 N/A
In the Linux kernel, the following vulnerability has been resolved: crypto: zstd - fix double-free in per-CPU stream cleanup The crypto/zstd module has a double-free bug that occurs when multiple tfms are allocated and freed. The issue happens because zstd_streams (per-CPU contexts) are freed in zstd_exit() during every tfm destruction, rather than being managed at the module level. When multiple tfms exist, each tfm exit attempts to free the same shared per-CPU streams, resulting in a double-free. This leads to a stack trace similar to: BUG: Bad page state in process kworker/u16:1 pfn:106fd93 page: refcount:0 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x106fd93 flags: 0x17ffffc0000000(node=0|zone=2|lastcpupid=0x1fffff) page_type: 0xffffffff() raw: 0017ffffc0000000 dead000000000100 dead000000000122 0000000000000000 raw: 0000000000000000 0000000000000000 00000000ffffffff 0000000000000000 page dumped because: nonzero entire_mapcount Modules linked in: ... CPU: 3 UID: 0 PID: 2506 Comm: kworker/u16:1 Kdump: loaded Tainted: G B Hardware name: ... Workqueue: btrfs-delalloc btrfs_work_helper Call Trace: <TASK> dump_stack_lvl+0x5d/0x80 bad_page+0x71/0xd0 free_unref_page_prepare+0x24e/0x490 free_unref_page+0x60/0x170 crypto_acomp_free_streams+0x5d/0xc0 crypto_acomp_exit_tfm+0x23/0x50 crypto_destroy_tfm+0x60/0xc0 ... Change the lifecycle management of zstd_streams to free the streams only once during module cleanup.
CVE-2025-68156 2025-12-18 7.5 High
Expr is an expression language and expression evaluation for Go. Prior to version 1.17.7, several builtin functions in Expr, including `flatten`, `min`, `max`, `mean`, and `median`, perform recursive traversal over user-provided data structures without enforcing a maximum recursion depth. If the evaluation environment contains deeply nested or cyclic data structures, these functions may recurse indefinitely until exceed the Go runtime stack limit. This results in a stack overflow panic, causing the host application to crash. While exploitability depends on whether an attacker can influence or inject cyclic or pathologically deep data into the evaluation environment, this behavior represents a denial-of-service (DoS) risk and affects overall library robustness. Instead of returning a recoverable evaluation error, the process may terminate unexpectedly. In affected versions, evaluation of expressions that invoke certain builtin functions on untrusted or insufficiently validated data structures can lead to a process-level crash due to stack exhaustion. This issue is most relevant in scenarios where Expr is used to evaluate expressions against externally supplied or dynamically constructed environments; cyclic references (directly or indirectly) can be introduced into arrays, maps, or structs; and there are no application-level safeguards preventing deeply nested input data. In typical use cases with controlled, acyclic data, the issue may not manifest. However, when present, the resulting panic can be used to reliably crash the application, constituting a denial of service. The issue has been fixed in the v1.17.7 versions of Expr. The patch introduces a maximum recursion depth limit for affected builtin functions. When this limit is exceeded, evaluation aborts gracefully and returns a descriptive error instead of panicking. Additionally, the maximum depth can be customized by users via `builtin.MaxDepth`, allowing applications with legitimate deep structures to raise the limit in a controlled manner. Users are strongly encouraged to upgrade to the patched release, which includes both the recursion guard and comprehensive test coverage to prevent regressions. For users who cannot immediately upgrade, some mitigations are recommended. Ensure that evaluation environments cannot contain cyclic references, validate or sanitize externally supplied data structures before passing them to Expr, and/or wrap expression evaluation with panic recovery to prevent a full process crash (as a last-resort defensive measure). These workarounds reduce risk but do not fully eliminate the issue without the patch.
CVE-2025-68220 1 Linux 1 Linux Kernel 2025-12-18 N/A
In the Linux kernel, the following vulnerability has been resolved: net: ethernet: ti: netcp: Standardize knav_dma_open_channel to return NULL on error Make knav_dma_open_channel consistently return NULL on error instead of ERR_PTR. Currently the header include/linux/soc/ti/knav_dma.h returns NULL when the driver is disabled, but the driver implementation does not even return NULL or ERR_PTR on failure, causing inconsistency in the users. This results in a crash in netcp_free_navigator_resources as followed (trimmed): Unhandled fault: alignment exception (0x221) at 0xfffffff2 [fffffff2] *pgd=80000800207003, *pmd=82ffda003, *pte=00000000 Internal error: : 221 [#1] SMP ARM Modules linked in: CPU: 0 UID: 0 PID: 1 Comm: swapper/0 Not tainted 6.17.0-rc7 #1 NONE Hardware name: Keystone PC is at knav_dma_close_channel+0x30/0x19c LR is at netcp_free_navigator_resources+0x2c/0x28c [... TRIM...] Call trace: knav_dma_close_channel from netcp_free_navigator_resources+0x2c/0x28c netcp_free_navigator_resources from netcp_ndo_open+0x430/0x46c netcp_ndo_open from __dev_open+0x114/0x29c __dev_open from __dev_change_flags+0x190/0x208 __dev_change_flags from netif_change_flags+0x1c/0x58 netif_change_flags from dev_change_flags+0x38/0xa0 dev_change_flags from ip_auto_config+0x2c4/0x11f0 ip_auto_config from do_one_initcall+0x58/0x200 do_one_initcall from kernel_init_freeable+0x1cc/0x238 kernel_init_freeable from kernel_init+0x1c/0x12c kernel_init from ret_from_fork+0x14/0x38 [... TRIM...] Standardize the error handling by making the function return NULL on all error conditions. The API is used in just the netcp_core.c so the impact is limited. Note, this change, in effect reverts commit 5b6cb43b4d62 ("net: ethernet: ti: netcp_core: return error while dma channel open issue"), but provides a less error prone implementation.
CVE-2025-59935 1 Glpi-project 1 Glpi 2025-12-18 6.5 Medium
GLPI is a free asset and IT management software package. Starting in version 10.0.0 and prior to version 10.0.21, an unauthenticated user can store an XSS payload through the inventory endpoint. Users should upgrade to 10.0.21 to receive a patch.
CVE-2025-68242 1 Linux 1 Linux Kernel 2025-12-18 7.0 High
In the Linux kernel, the following vulnerability has been resolved: NFS: Fix LTP test failures when timestamps are delegated The utimes01 and utime06 tests fail when delegated timestamps are enabled, specifically in subtests that modify the atime and mtime fields using the 'nobody' user ID. The problem can be reproduced as follow: # echo "/media *(rw,no_root_squash,sync)" >> /etc/exports # export -ra # mount -o rw,nfsvers=4.2 127.0.0.1:/media /tmpdir # cd /opt/ltp # ./runltp -d /tmpdir -s utimes01 # ./runltp -d /tmpdir -s utime06 This issue occurs because nfs_setattr does not verify the inode's UID against the caller's fsuid when delegated timestamps are permitted for the inode. This patch adds the UID check and if it does not match then the request is sent to the server for permission checking.
CVE-2025-13750 2 Mateuszgbiorczyk, Wordpress 2 Converter For Media, Wordpress 2025-12-18 4.3 Medium
The Converter for Media – Optimize images | Convert WebP & AVIF plugin for WordPress is vulnerable to unauthorized modification of data due to a missing capability check on the `/webp-converter/v1/regenerate-attachment` REST endpoint in all versions up to, and including, 6.3.2. This makes it possible for authenticated attackers, with Subscriber-level access and above, to delete optimized WebP/AVIF variants for arbitrary attachments.