| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| Multiple memory leaks in kadmin/server/server_stubs.c in kadmind in MIT Kerberos 5 (aka krb5) before 1.13.4 and 1.14.x before 1.14.1 allow remote authenticated users to cause a denial of service (memory consumption) via a request specifying a NULL principal name. |
| Memory leak in hw/9pfs/9p-proxy.c in QEMU (aka Quick Emulator) allows local privileged guest OS users to cause a denial of service (host memory consumption and possibly QEMU process crash) by leveraging a missing cleanup operation in the proxy backend. |
| The fragment_add_work function in epan/reassemble.c in the packet-reassembly feature in Wireshark 1.12.x before 1.12.5 does not properly determine the defragmentation state in a case of an insufficient snapshot length, which allows remote attackers to cause a denial of service (memory consumption) via a crafted packet. |
| Memory leak in the __archive_read_get_extract function in archive_read_extract2.c in libarchive before 3.2.0 allows remote attackers to cause a denial of service via a tar file. |
| Memory leak in the v9fs_device_unrealize_common function in hw/9pfs/9p.c in QEMU (aka Quick Emulator) allows local privileged guest OS users to cause a denial of service (host memory consumption and possibly QEMU process crash) via vectors involving the order of resource cleanup. |
| Memory leak in hw/9pfs/9p.c in QEMU (aka Quick Emulator) allows local privileged guest OS users to cause a denial of service (host memory consumption and possibly QEMU process crash) by leveraging a missing cleanup operation in FileOperations. |
| Memory leak in hw/9pfs/9p-handle.c in QEMU (aka Quick Emulator) allows local privileged guest OS users to cause a denial of service (host memory consumption and possibly QEMU process crash) by leveraging a missing cleanup operation in the handle backend. |
| A Missing Release of Memory after Effective Lifetime vulnerability in the packet forwarding engine (PFE) of Juniper Networks Junos OS on MX Series allows an unauthenticated adjacent attacker to cause a Denial-of-Service (DoS).
In a subscriber management scenario, login/logout activity triggers a memory leak, and the leaked memory gradually increments and eventually results in a crash.
user@host> show chassis fpc
Temp CPU Utilization (%) CPU Utilization (%) Memory Utilization (%)
Slot State (C) Total Interrupt 1min 5min 15min DRAM (MB) Heap Buffer
2 Online 36 10 0 9 8 9 32768 26 0
This issue affects Junos OS on MX Series:
* All versions before 21.2R3-S9
* from 21.4 before 21.4R3-S10
* from 22.2 before 22.2R3-S6
* from 22.4 before 22.4R3-S5
* from 23.2 before 23.2R2-S3
* from 23.4 before 23.4R2-S3
* from 24.2 before 24.2R2. |
| A Missing Release of Memory after Effective Lifetime vulnerability in the Anti-Virus processing of Juniper Networks Junos OS on SRX Series
allows an unauthenticated, network-based attacker to cause a Denial-of-Service (DoS).
On all SRX platforms with Anti-Virus enabled, if a server sends specific content in the HTTP body of a response to a client request, these packets are queued by Anti-Virus processing in Juniper Buffers (jbufs) which are never released. When these jbufs are exhausted, the device stops forwarding all transit traffic.
A jbuf memory leak can be noticed from the following logs:
(<node>.)<fpc> Warning: jbuf pool id <#> utilization level (<current level>%) is above <threshold>%!
To recover from this issue, the affected device needs to be manually rebooted to free the leaked jbufs.
This issue affects Junos OS on SRX Series:
* all versions before 21.2R3-S9,
* 21.4 versions before 21.4R3-S10,
* 22.2 versions before 22.2R3-S6,
* 22.4 versions before 22.4R3-S6,
* 23.2 versions before 23.2R2-S3,
* 23.4 versions before 23.4R2-S3,
* 24.2 versions before 24.2R2. |
| A Missing Release of Memory after Effective Lifetime vulnerability in Juniper Networks Junos OS on MX Series allows an unauthenticated adjacent attacker to cause a Denial-of-Service (DoS).
In a subscriber management scenario continuous subscriber logins will trigger a memory leak and eventually lead to an FPC crash and restart.
This issue affects Junos OS on MX Series:
* All version before 21.2R3-S6,
* 21.4 versions before 21.4R3-S6,
* 22.1 versions before 22.1R3-S5,
* 22.2 versions before 22.2R3-S3,
* 22.3 versions before 22.3R3-S2,
* 22.4 versions before 22.4R3,
* 23.2 versions before 23.2R2. |
| Memory leak in pngrutil.c in libpng before 1.2.44, and 1.4.x before 1.4.3, allows remote attackers to cause a denial of service (memory consumption and application crash) via a PNG image containing malformed Physical Scale (aka sCAL) chunks. |
| Memory leak in the embedded_profile_len function in pngwutil.c in libpng before 1.2.39beta5 allows context-dependent attackers to cause a denial of service (memory leak or segmentation fault) via a JPEG image containing an iCCP chunk with a negative embedded profile length. NOTE: this is due to an incomplete fix for CVE-2006-7244. |
| The actions implementation in the network queueing functionality in the Linux kernel before 2.6.36-rc2 does not properly initialize certain structure members when performing dump operations, which allows local users to obtain potentially sensitive information from kernel memory via vectors related to (1) the tcf_gact_dump function in net/sched/act_gact.c, (2) the tcf_mirred_dump function in net/sched/act_mirred.c, (3) the tcf_nat_dump function in net/sched/act_nat.c, (4) the tcf_simp_dump function in net/sched/act_simple.c, and (5) the tcf_skbedit_dump function in net/sched/act_skbedit.c. |
| Memory leak in smbd in Samba 3.6.x before 3.6.3 allows remote attackers to cause a denial of service (memory and CPU consumption) by making many connection requests. |
| Memory leak in the __kvm_set_memory_region function in virt/kvm/kvm_main.c in the Linux kernel before 3.9 allows local users to cause a denial of service (memory consumption) by leveraging certain device access to trigger movement of memory slots. |
| The Generic Receive Offload (GRO) implementation in the Linux kernel 2.6.18 on Red Hat Enterprise Linux 5 and 2.6.32 on Red Hat Enterprise Linux 6, as used in Red Hat Enterprise Virtualization (RHEV) Hypervisor and other products, allows remote attackers to cause a denial of service via crafted VLAN packets that are processed by the napi_reuse_skb function, leading to (1) a memory leak or (2) memory corruption, a different vulnerability than CVE-2011-1478. |
| drivers/hid/hid-sensor-hub.c in the Human Interface Device (HID) subsystem in the Linux kernel through 3.11, when CONFIG_HID_SENSOR_HUB is enabled, allows physically proximate attackers to obtain sensitive information from kernel memory via a crafted device. |
| The xfs_ioc_fsgetxattr function in fs/xfs/linux-2.6/xfs_ioctl.c in the Linux kernel before 2.6.36-rc4 does not initialize a certain structure member, which allows local users to obtain potentially sensitive information from kernel stack memory via an ioctl call. |
| Memory leak in pngwutil.c in libpng 1.2.13beta1, and other versions before 1.2.15beta3, allows context-dependent attackers to cause a denial of service (memory leak or segmentation fault) via a JPEG image containing an iCCP chunk with a negative embedded profile length. |
| Multiple memory leaks in ISC DHCP 4.1.x and 4.2.x before 4.2.4-P1 and 4.1-ESV before 4.1-ESV-R6 allow remote attackers to cause a denial of service (memory consumption) by sending many requests. |