| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
md/raid1: Fix data corruption for degraded array with slow disk
read_balance() will avoid reading from slow disks as much as possible,
however, if valid data only lands in slow disks, and a new normal disk
is still in recovery, unrecovered data can be read:
raid1_read_request
read_balance
raid1_should_read_first
-> return false
choose_best_rdev
-> normal disk is not recovered, return -1
choose_bb_rdev
-> missing the checking of recovery, return the normal disk
-> read unrecovered data
Root cause is that the checking of recovery is missing in
choose_bb_rdev(). Hence add such checking to fix the problem.
Also fix similar problem in choose_slow_rdev(). |
| In the Linux kernel, the following vulnerability has been resolved:
bpf: Fix a kernel verifier crash in stacksafe()
Daniel Hodges reported a kernel verifier crash when playing with sched-ext.
Further investigation shows that the crash is due to invalid memory access
in stacksafe(). More specifically, it is the following code:
if (exact != NOT_EXACT &&
old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
cur->stack[spi].slot_type[i % BPF_REG_SIZE])
return false;
The 'i' iterates old->allocated_stack.
If cur->allocated_stack < old->allocated_stack the out-of-bound
access will happen.
To fix the issue add 'i >= cur->allocated_stack' check such that if
the condition is true, stacksafe() should fail. Otherwise,
cur->stack[spi].slot_type[i % BPF_REG_SIZE] memory access is legal. |
| In the Linux kernel, the following vulnerability has been resolved:
net/mlx5: Fix IPsec RoCE MPV trace call
Prevent the call trace below from happening, by not allowing IPsec
creation over a slave, if master device doesn't support IPsec.
WARNING: CPU: 44 PID: 16136 at kernel/locking/rwsem.c:240 down_read+0x75/0x94
Modules linked in: esp4_offload esp4 act_mirred act_vlan cls_flower sch_ingress mlx5_vdpa vringh vhost_iotlb vdpa mst_pciconf(OE) nfsv3 nfs_acl nfs lockd grace fscache netfs xt_CHECKSUM xt_MASQUERADE xt_conntrack ipt_REJECT nf_reject_ipv4 nft_compat nft_counter nft_chain_nat nf_nat nf_conntrack nf_defrag_ipv6 nf_defrag_ipv4 rfkill cuse fuse rpcrdma sunrpc rdma_ucm ib_srpt ib_isert iscsi_target_mod target_core_mod ib_umad ib_iser libiscsi scsi_transport_iscsi rdma_cm ib_ipoib iw_cm ib_cm ipmi_ssif intel_rapl_msr intel_rapl_common amd64_edac edac_mce_amd kvm_amd kvm irqbypass crct10dif_pclmul crc32_pclmul mlx5_ib ghash_clmulni_intel sha1_ssse3 dell_smbios ib_uverbs aesni_intel crypto_simd dcdbas wmi_bmof dell_wmi_descriptor cryptd pcspkr ib_core acpi_ipmi sp5100_tco ccp i2c_piix4 ipmi_si ptdma k10temp ipmi_devintf ipmi_msghandler acpi_power_meter acpi_cpufreq ext4 mbcache jbd2 sd_mod t10_pi sg mgag200 drm_kms_helper syscopyarea sysfillrect mlx5_core sysimgblt fb_sys_fops cec
ahci libahci mlxfw drm pci_hyperv_intf libata tg3 sha256_ssse3 tls megaraid_sas i2c_algo_bit psample wmi dm_mirror dm_region_hash dm_log dm_mod [last unloaded: mst_pci]
CPU: 44 PID: 16136 Comm: kworker/44:3 Kdump: loaded Tainted: GOE 5.15.0-20240509.el8uek.uek7_u3_update_v6.6_ipsec_bf.x86_64 #2
Hardware name: Dell Inc. PowerEdge R7525/074H08, BIOS 2.0.3 01/15/2021
Workqueue: events xfrm_state_gc_task
RIP: 0010:down_read+0x75/0x94
Code: 00 48 8b 45 08 65 48 8b 14 25 80 fc 01 00 83 e0 02 48 09 d0 48 83 c8 01 48 89 45 08 5d 31 c0 89 c2 89 c6 89 c7 e9 cb 88 3b 00 <0f> 0b 48 8b 45 08 a8 01 74 b2 a8 02 75 ae 48 89 c2 48 83 ca 02 f0
RSP: 0018:ffffb26387773da8 EFLAGS: 00010282
RAX: 0000000000000000 RBX: ffffa08b658af900 RCX: 0000000000000001
RDX: 0000000000000000 RSI: ff886bc5e1366f2f RDI: 0000000000000000
RBP: ffffa08b658af940 R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000000 R12: ffffa0a9bfb31540
R13: ffffa0a9bfb37900 R14: 0000000000000000 R15: ffffa0a9bfb37905
FS: 0000000000000000(0000) GS:ffffa0a9bfb00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 000055a45ed814e8 CR3: 000000109038a000 CR4: 0000000000350ee0
Call Trace:
<TASK>
? show_trace_log_lvl+0x1d6/0x2f9
? show_trace_log_lvl+0x1d6/0x2f9
? mlx5_devcom_for_each_peer_begin+0x29/0x60 [mlx5_core]
? down_read+0x75/0x94
? __warn+0x80/0x113
? down_read+0x75/0x94
? report_bug+0xa4/0x11d
? handle_bug+0x35/0x8b
? exc_invalid_op+0x14/0x75
? asm_exc_invalid_op+0x16/0x1b
? down_read+0x75/0x94
? down_read+0xe/0x94
mlx5_devcom_for_each_peer_begin+0x29/0x60 [mlx5_core]
mlx5_ipsec_fs_roce_tx_destroy+0xb1/0x130 [mlx5_core]
tx_destroy+0x1b/0xc0 [mlx5_core]
tx_ft_put+0x53/0xc0 [mlx5_core]
mlx5e_xfrm_free_state+0x45/0x90 [mlx5_core]
___xfrm_state_destroy+0x10f/0x1a2
xfrm_state_gc_task+0x81/0xa9
process_one_work+0x1f1/0x3c6
worker_thread+0x53/0x3e4
? process_one_work.cold+0x46/0x3c
kthread+0x127/0x144
? set_kthread_struct+0x60/0x52
ret_from_fork+0x22/0x2d
</TASK>
---[ end trace 5ef7896144d398e1 ]--- |
| In the Linux kernel, the following vulnerability has been resolved:
drm/msm/dpu: move dpu_encoder's connector assignment to atomic_enable()
For cases where the crtc's connectors_changed was set without enable/active
getting toggled , there is an atomic_enable() call followed by an
atomic_disable() but without an atomic_mode_set().
This results in a NULL ptr access for the dpu_encoder_get_drm_fmt() call in
the atomic_enable() as the dpu_encoder's connector was cleared in the
atomic_disable() but not re-assigned as there was no atomic_mode_set() call.
Fix the NULL ptr access by moving the assignment for atomic_enable() and also
use drm_atomic_get_new_connector_for_encoder() to get the connector from
the atomic_state.
Patchwork: https://patchwork.freedesktop.org/patch/606729/ |
| In the Linux kernel, the following vulnerability has been resolved:
s390/boot: Avoid possible physmem_info segment corruption
When physical memory for the kernel image is allocated it does not
consider extra memory required for offsetting the image start to
match it with the lower 20 bits of KASLR virtual base address. That
might lead to kernel access beyond its memory range. |
| In the Linux kernel, the following vulnerability has been resolved:
nvme: move stopping keep-alive into nvme_uninit_ctrl()
Commit 4733b65d82bd ("nvme: start keep-alive after admin queue setup")
moves starting keep-alive from nvme_start_ctrl() into
nvme_init_ctrl_finish(), but don't move stopping keep-alive into
nvme_uninit_ctrl(), so keep-alive work can be started and keep pending
after failing to start controller, finally use-after-free is triggered if
nvme host driver is unloaded.
This patch fixes kernel panic when running nvme/004 in case that connection
failure is triggered, by moving stopping keep-alive into nvme_uninit_ctrl().
This way is reasonable because keep-alive is now started in
nvme_init_ctrl_finish(). |
| In the Linux kernel, the following vulnerability has been resolved:
nouveau/firmware: use dma non-coherent allocator
Currently, enabling SG_DEBUG in the kernel will cause nouveau to hit a
BUG() on startup, when the iommu is enabled:
kernel BUG at include/linux/scatterlist.h:187!
invalid opcode: 0000 [#1] PREEMPT SMP NOPTI
CPU: 7 PID: 930 Comm: (udev-worker) Not tainted 6.9.0-rc3Lyude-Test+ #30
Hardware name: MSI MS-7A39/A320M GAMING PRO (MS-7A39), BIOS 1.I0 01/22/2019
RIP: 0010:sg_init_one+0x85/0xa0
Code: 69 88 32 01 83 e1 03 f6 c3 03 75 20 a8 01 75 1e 48 09 cb 41 89 54
24 08 49 89 1c 24 41 89 6c 24 0c 5b 5d 41 5c e9 7b b9 88 00 <0f> 0b 0f 0b
0f 0b 48 8b 05 5e 46 9a 01 eb b2 66 66 2e 0f 1f 84 00
RSP: 0018:ffffa776017bf6a0 EFLAGS: 00010246
RAX: 0000000000000000 RBX: ffffa77600d87000 RCX: 000000000000002b
RDX: 0000000000000001 RSI: 0000000000000000 RDI: ffffa77680d87000
RBP: 000000000000e000 R08: 0000000000000000 R09: 0000000000000000
R10: ffff98f4c46aa508 R11: 0000000000000000 R12: ffff98f4c46aa508
R13: ffff98f4c46aa008 R14: ffffa77600d4a000 R15: ffffa77600d4a018
FS: 00007feeb5aae980(0000) GS:ffff98f5c4dc0000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f22cb9a4520 CR3: 00000001043ba000 CR4: 00000000003506f0
Call Trace:
<TASK>
? die+0x36/0x90
? do_trap+0xdd/0x100
? sg_init_one+0x85/0xa0
? do_error_trap+0x65/0x80
? sg_init_one+0x85/0xa0
? exc_invalid_op+0x50/0x70
? sg_init_one+0x85/0xa0
? asm_exc_invalid_op+0x1a/0x20
? sg_init_one+0x85/0xa0
nvkm_firmware_ctor+0x14a/0x250 [nouveau]
nvkm_falcon_fw_ctor+0x42/0x70 [nouveau]
ga102_gsp_booter_ctor+0xb4/0x1a0 [nouveau]
r535_gsp_oneinit+0xb3/0x15f0 [nouveau]
? srso_return_thunk+0x5/0x5f
? srso_return_thunk+0x5/0x5f
? nvkm_udevice_new+0x95/0x140 [nouveau]
? srso_return_thunk+0x5/0x5f
? srso_return_thunk+0x5/0x5f
? ktime_get+0x47/0xb0
Fix this by using the non-coherent allocator instead, I think there
might be a better answer to this, but it involve ripping up some of
APIs using sg lists. |
| In the Linux kernel, the following vulnerability has been resolved:
KVM: s390: fix validity interception issue when gisa is switched off
We might run into a SIE validity if gisa has been disabled either via using
kernel parameter "kvm.use_gisa=0" or by setting the related sysfs
attribute to N (echo N >/sys/module/kvm/parameters/use_gisa).
The validity is caused by an invalid value in the SIE control block's
gisa designation. That happens because we pass the uninitialized gisa
origin to virt_to_phys() before writing it to the gisa designation.
To fix this we return 0 in kvm_s390_get_gisa_desc() if the origin is 0.
kvm_s390_get_gisa_desc() is used to determine which gisa designation to
set in the SIE control block. A value of 0 in the gisa designation disables
gisa usage.
The issue surfaces in the host kernel with the following kernel message as
soon a new kvm guest start is attemted.
kvm: unhandled validity intercept 0x1011
WARNING: CPU: 0 PID: 781237 at arch/s390/kvm/intercept.c:101 kvm_handle_sie_intercept+0x42e/0x4d0 [kvm]
Modules linked in: vhost_net tap tun xt_CHECKSUM xt_MASQUERADE xt_conntrack ipt_REJECT xt_tcpudp nft_compat x_tables nf_nat_tftp nf_conntrack_tftp vfio_pci_core irqbypass vhost_vsock vmw_vsock_virtio_transport_common vsock vhost vhost_iotlb kvm nft_fib_inet nft_fib_ipv4 nft_fib_ipv6 nft_fib nft_reject_inet nf_reject_ipv4 nf_reject_ipv6 nft_reject nft_ct nft_chain_nat nf_nat nf_conntrack nf_defrag_ipv6 nf_defrag_ipv4 ip_set nf_tables sunrpc mlx5_ib ib_uverbs ib_core mlx5_core uvdevice s390_trng eadm_sch vfio_ccw zcrypt_cex4 mdev vfio_iommu_type1 vfio sch_fq_codel drm i2c_core loop drm_panel_orientation_quirks configfs nfnetlink lcs ctcm fsm dm_service_time ghash_s390 prng chacha_s390 libchacha aes_s390 des_s390 libdes sha3_512_s390 sha3_256_s390 sha512_s390 sha256_s390 sha1_s390 sha_common dm_mirror dm_region_hash dm_log zfcp scsi_transport_fc scsi_dh_rdac scsi_dh_emc scsi_dh_alua pkey zcrypt dm_multipath rng_core autofs4 [last unloaded: vfio_pci]
CPU: 0 PID: 781237 Comm: CPU 0/KVM Not tainted 6.10.0-08682-gcad9f11498ea #6
Hardware name: IBM 3931 A01 701 (LPAR)
Krnl PSW : 0704c00180000000 000003d93deb0122 (kvm_handle_sie_intercept+0x432/0x4d0 [kvm])
R:0 T:1 IO:1 EX:1 Key:0 M:1 W:0 P:0 AS:3 CC:0 PM:0 RI:0 EA:3
Krnl GPRS: 000003d900000027 000003d900000023 0000000000000028 000002cd00000000
000002d063a00900 00000359c6daf708 00000000000bebb5 0000000000001eff
000002cfd82e9000 000002cfd80bc000 0000000000001011 000003d93deda412
000003ff8962df98 000003d93de77ce0 000003d93deb011e 00000359c6daf960
Krnl Code: 000003d93deb0112: c020fffe7259 larl %r2,000003d93de7e5c4
000003d93deb0118: c0e53fa8beac brasl %r14,000003d9bd3c7e70
#000003d93deb011e: af000000 mc 0,0
>000003d93deb0122: a728ffea lhi %r2,-22
000003d93deb0126: a7f4fe24 brc 15,000003d93deafd6e
000003d93deb012a: 9101f0b0 tm 176(%r15),1
000003d93deb012e: a774fe48 brc 7,000003d93deafdbe
000003d93deb0132: 40a0f0ae sth %r10,174(%r15)
Call Trace:
[<000003d93deb0122>] kvm_handle_sie_intercept+0x432/0x4d0 [kvm]
([<000003d93deb011e>] kvm_handle_sie_intercept+0x42e/0x4d0 [kvm])
[<000003d93deacc10>] vcpu_post_run+0x1d0/0x3b0 [kvm]
[<000003d93deaceda>] __vcpu_run+0xea/0x2d0 [kvm]
[<000003d93dead9da>] kvm_arch_vcpu_ioctl_run+0x16a/0x430 [kvm]
[<000003d93de93ee0>] kvm_vcpu_ioctl+0x190/0x7c0 [kvm]
[<000003d9bd728b4e>] vfs_ioctl+0x2e/0x70
[<000003d9bd72a092>] __s390x_sys_ioctl+0xc2/0xd0
[<000003d9be0e9222>] __do_syscall+0x1f2/0x2e0
[<000003d9be0f9a90>] system_call+0x70/0x98
Last Breaking-Event-Address:
[<000003d9bd3c7f58>] __warn_printk+0xe8/0xf0 |
| In the Linux kernel, the following vulnerability has been resolved:
KEYS: trusted: dcp: fix leak of blob encryption key
Trusted keys unseal the key blob on load, but keep the sealed payload in
the blob field so that every subsequent read (export) will simply
convert this field to hex and send it to userspace.
With DCP-based trusted keys, we decrypt the blob encryption key (BEK)
in the Kernel due hardware limitations and then decrypt the blob payload.
BEK decryption is done in-place which means that the trusted key blob
field is modified and it consequently holds the BEK in plain text.
Every subsequent read of that key thus send the plain text BEK instead
of the encrypted BEK to userspace.
This issue only occurs when importing a trusted DCP-based key and
then exporting it again. This should rarely happen as the common use cases
are to either create a new trusted key and export it, or import a key
blob and then just use it without exporting it again.
Fix this by performing BEK decryption and encryption in a dedicated
buffer. Further always wipe the plain text BEK buffer to prevent leaking
the key via uninitialized memory. |
| In the Linux kernel, the following vulnerability has been resolved:
net: ethernet: mtk_wed: fix use-after-free panic in mtk_wed_setup_tc_block_cb()
When there are multiple ap interfaces on one band and with WED on,
turning the interface down will cause a kernel panic on MT798X.
Previously, cb_priv was freed in mtk_wed_setup_tc_block() without
marking NULL,and mtk_wed_setup_tc_block_cb() didn't check the value, too.
Assign NULL after free cb_priv in mtk_wed_setup_tc_block() and check NULL
in mtk_wed_setup_tc_block_cb().
----------
Unable to handle kernel paging request at virtual address 0072460bca32b4f5
Call trace:
mtk_wed_setup_tc_block_cb+0x4/0x38
0xffffffc0794084bc
tcf_block_playback_offloads+0x70/0x1e8
tcf_block_unbind+0x6c/0xc8
...
--------- |
| In the Linux kernel, the following vulnerability has been resolved:
vsock: fix recursive ->recvmsg calls
After a vsock socket has been added to a BPF sockmap, its prot->recvmsg
has been replaced with vsock_bpf_recvmsg(). Thus the following
recursiion could happen:
vsock_bpf_recvmsg()
-> __vsock_recvmsg()
-> vsock_connectible_recvmsg()
-> prot->recvmsg()
-> vsock_bpf_recvmsg() again
We need to fix it by calling the original ->recvmsg() without any BPF
sockmap logic in __vsock_recvmsg(). |
| In the Linux kernel, the following vulnerability has been resolved:
iommu: Restore lost return in iommu_report_device_fault()
When iommu_report_device_fault gets called with a partial fault it is
supposed to collect the fault into the group and then return.
Instead the return was accidently deleted which results in trying to
process the fault and an eventual crash.
Deleting the return was a typo, put it back. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/v3d: Fix out-of-bounds read in `v3d_csd_job_run()`
When enabling UBSAN on Raspberry Pi 5, we get the following warning:
[ 387.894977] UBSAN: array-index-out-of-bounds in drivers/gpu/drm/v3d/v3d_sched.c:320:3
[ 387.903868] index 7 is out of range for type '__u32 [7]'
[ 387.909692] CPU: 0 PID: 1207 Comm: kworker/u16:2 Tainted: G WC 6.10.3-v8-16k-numa #151
[ 387.919166] Hardware name: Raspberry Pi 5 Model B Rev 1.0 (DT)
[ 387.925961] Workqueue: v3d_csd drm_sched_run_job_work [gpu_sched]
[ 387.932525] Call trace:
[ 387.935296] dump_backtrace+0x170/0x1b8
[ 387.939403] show_stack+0x20/0x38
[ 387.942907] dump_stack_lvl+0x90/0xd0
[ 387.946785] dump_stack+0x18/0x28
[ 387.950301] __ubsan_handle_out_of_bounds+0x98/0xd0
[ 387.955383] v3d_csd_job_run+0x3a8/0x438 [v3d]
[ 387.960707] drm_sched_run_job_work+0x520/0x6d0 [gpu_sched]
[ 387.966862] process_one_work+0x62c/0xb48
[ 387.971296] worker_thread+0x468/0x5b0
[ 387.975317] kthread+0x1c4/0x1e0
[ 387.978818] ret_from_fork+0x10/0x20
[ 387.983014] ---[ end trace ]---
This happens because the UAPI provides only seven configuration
registers and we are reading the eighth position of this u32 array.
Therefore, fix the out-of-bounds read in `v3d_csd_job_run()` by
accessing only seven positions on the '__u32 [7]' array. The eighth
register exists indeed on V3D 7.1, but it isn't currently used. That
being so, let's guarantee that it remains unused and add a note that it
could be set in a future patch. |
| In the Linux kernel, the following vulnerability has been resolved:
smb/client: avoid possible NULL dereference in cifs_free_subrequest()
Clang static checker (scan-build) warning:
cifsglob.h:line 890, column 3
Access to field 'ops' results in a dereference of a null pointer.
Commit 519be989717c ("cifs: Add a tracepoint to track credits involved in
R/W requests") adds a check for 'rdata->server', and let clang throw this
warning about NULL dereference.
When 'rdata->credits.value != 0 && rdata->server == NULL' happens,
add_credits_and_wake_if() will call rdata->server->ops->add_credits().
This will cause NULL dereference problem. Add a check for 'rdata->server'
to avoid NULL dereference. |
| In the Linux kernel, the following vulnerability has been resolved:
bnxt_en: Fix double DMA unmapping for XDP_REDIRECT
Remove the dma_unmap_page_attrs() call in the driver's XDP_REDIRECT
code path. This should have been removed when we let the page pool
handle the DMA mapping. This bug causes the warning:
WARNING: CPU: 7 PID: 59 at drivers/iommu/dma-iommu.c:1198 iommu_dma_unmap_page+0xd5/0x100
CPU: 7 PID: 59 Comm: ksoftirqd/7 Tainted: G W 6.8.0-1010-gcp #11-Ubuntu
Hardware name: Dell Inc. PowerEdge R7525/0PYVT1, BIOS 2.15.2 04/02/2024
RIP: 0010:iommu_dma_unmap_page+0xd5/0x100
Code: 89 ee 48 89 df e8 cb f2 69 ff 48 83 c4 08 5b 41 5c 41 5d 41 5e 41 5f 5d 31 c0 31 d2 31 c9 31 f6 31 ff 45 31 c0 e9 ab 17 71 00 <0f> 0b 48 83 c4 08 5b 41 5c 41 5d 41 5e 41 5f 5d 31 c0 31 d2 31 c9
RSP: 0018:ffffab1fc0597a48 EFLAGS: 00010246
RAX: 0000000000000000 RBX: ffff99ff838280c8 RCX: 0000000000000000
RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000000
RBP: ffffab1fc0597a78 R08: 0000000000000002 R09: ffffab1fc0597c1c
R10: ffffab1fc0597cd3 R11: ffff99ffe375acd8 R12: 00000000e65b9000
R13: 0000000000000050 R14: 0000000000001000 R15: 0000000000000002
FS: 0000000000000000(0000) GS:ffff9a06efb80000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000565c34c37210 CR3: 00000005c7e3e000 CR4: 0000000000350ef0
? show_regs+0x6d/0x80
? __warn+0x89/0x150
? iommu_dma_unmap_page+0xd5/0x100
? report_bug+0x16a/0x190
? handle_bug+0x51/0xa0
? exc_invalid_op+0x18/0x80
? iommu_dma_unmap_page+0xd5/0x100
? iommu_dma_unmap_page+0x35/0x100
dma_unmap_page_attrs+0x55/0x220
? bpf_prog_4d7e87c0d30db711_xdp_dispatcher+0x64/0x9f
bnxt_rx_xdp+0x237/0x520 [bnxt_en]
bnxt_rx_pkt+0x640/0xdd0 [bnxt_en]
__bnxt_poll_work+0x1a1/0x3d0 [bnxt_en]
bnxt_poll+0xaa/0x1e0 [bnxt_en]
__napi_poll+0x33/0x1e0
net_rx_action+0x18a/0x2f0 |
| In the Linux kernel, the following vulnerability has been resolved:
workqueue: Fix UBSAN 'subtraction overflow' error in shift_and_mask()
UBSAN reports the following 'subtraction overflow' error when booting
in a virtual machine on Android:
| Internal error: UBSAN: integer subtraction overflow: 00000000f2005515 [#1] PREEMPT SMP
| Modules linked in:
| CPU: 0 PID: 1 Comm: swapper/0 Not tainted 6.10.0-00006-g3cbe9e5abd46-dirty #4
| Hardware name: linux,dummy-virt (DT)
| pstate: 600000c5 (nZCv daIF -PAN -UAO -TCO -DIT -SSBS BTYPE=--)
| pc : cancel_delayed_work+0x34/0x44
| lr : cancel_delayed_work+0x2c/0x44
| sp : ffff80008002ba60
| x29: ffff80008002ba60 x28: 0000000000000000 x27: 0000000000000000
| x26: 0000000000000000 x25: 0000000000000000 x24: 0000000000000000
| x23: 0000000000000000 x22: 0000000000000000 x21: ffff1f65014cd3c0
| x20: ffffc0e84c9d0da0 x19: ffffc0e84cab3558 x18: ffff800080009058
| x17: 00000000247ee1f8 x16: 00000000247ee1f8 x15: 00000000bdcb279d
| x14: 0000000000000001 x13: 0000000000000075 x12: 00000a0000000000
| x11: ffff1f6501499018 x10: 00984901651fffff x9 : ffff5e7cc35af000
| x8 : 0000000000000001 x7 : 3d4d455453595342 x6 : 000000004e514553
| x5 : ffff1f6501499265 x4 : ffff1f650ff60b10 x3 : 0000000000000620
| x2 : ffff80008002ba78 x1 : 0000000000000000 x0 : 0000000000000000
| Call trace:
| cancel_delayed_work+0x34/0x44
| deferred_probe_extend_timeout+0x20/0x70
| driver_register+0xa8/0x110
| __platform_driver_register+0x28/0x3c
| syscon_init+0x24/0x38
| do_one_initcall+0xe4/0x338
| do_initcall_level+0xac/0x178
| do_initcalls+0x5c/0xa0
| do_basic_setup+0x20/0x30
| kernel_init_freeable+0x8c/0xf8
| kernel_init+0x28/0x1b4
| ret_from_fork+0x10/0x20
| Code: f9000fbf 97fffa2f 39400268 37100048 (d42aa2a0)
| ---[ end trace 0000000000000000 ]---
| Kernel panic - not syncing: UBSAN: integer subtraction overflow: Fatal exception
This is due to shift_and_mask() using a signed immediate to construct
the mask and being called with a shift of 31 (WORK_OFFQ_POOL_SHIFT) so
that it ends up decrementing from INT_MIN.
Use an unsigned constant '1U' to generate the mask in shift_and_mask(). |
| In the Linux kernel, the following vulnerability has been resolved:
drm/xe: Fix opregion leak
Being part o the display, ideally the setup and cleanup would be done by
display itself. However this is a bigger refactor that needs to be done
on both i915 and xe. For now, just fix the leak:
unreferenced object 0xffff8881a0300008 (size 192):
comm "modprobe", pid 4354, jiffies 4295647021
hex dump (first 32 bytes):
00 00 87 27 81 88 ff ff 18 80 9b 00 00 c9 ff ff ...'............
18 81 9b 00 00 c9 ff ff 00 00 00 00 00 00 00 00 ................
backtrace (crc 99260e31):
[<ffffffff823ce65b>] kmemleak_alloc+0x4b/0x80
[<ffffffff81493be2>] kmalloc_trace_noprof+0x312/0x3d0
[<ffffffffa1345679>] intel_opregion_setup+0x89/0x700 [xe]
[<ffffffffa125bfaf>] xe_display_init_noirq+0x2f/0x90 [xe]
[<ffffffffa1199ec3>] xe_device_probe+0x7a3/0xbf0 [xe]
[<ffffffffa11f3713>] xe_pci_probe+0x333/0x5b0 [xe]
[<ffffffff81af6be8>] local_pci_probe+0x48/0xb0
[<ffffffff81af8778>] pci_device_probe+0xc8/0x280
[<ffffffff81d09048>] really_probe+0xf8/0x390
[<ffffffff81d0937a>] __driver_probe_device+0x8a/0x170
[<ffffffff81d09503>] driver_probe_device+0x23/0xb0
[<ffffffff81d097b7>] __driver_attach+0xc7/0x190
[<ffffffff81d0628d>] bus_for_each_dev+0x7d/0xd0
[<ffffffff81d0851e>] driver_attach+0x1e/0x30
[<ffffffff81d07ac7>] bus_add_driver+0x117/0x250
(cherry picked from commit 6f4e43a2f771b737d991142ec4f6d4b7ff31fbb4) |
| In the Linux kernel, the following vulnerability has been resolved:
drm/xe: Fix missing workqueue destroy in xe_gt_pagefault
On driver reload we never free up the memory for the pagefault and
access counter workqueues. Add those destroy calls here.
(cherry picked from commit 7586fc52b14e0b8edd0d1f8a434e0de2078b7b2b) |
| In the Linux kernel, the following vulnerability has been resolved:
drm/xe: Free job before xe_exec_queue_put
Free job depends on job->vm being valid, the last xe_exec_queue_put can
destroy the VM. Prevent UAF by freeing job before xe_exec_queue_put.
(cherry picked from commit 32a42c93b74c8ca6d0915ea3eba21bceff53042f) |
| In the Linux kernel, the following vulnerability has been resolved:
ata: pata_macio: Fix DMA table overflow
Kolbjørn and Jonáš reported that their 32-bit PowerMacs were crashing
in pata-macio since commit 09fe2bfa6b83 ("ata: pata_macio: Fix
max_segment_size with PAGE_SIZE == 64K").
For example:
kernel BUG at drivers/ata/pata_macio.c:544!
Oops: Exception in kernel mode, sig: 5 [#1]
BE PAGE_SIZE=4K MMU=Hash SMP NR_CPUS=2 DEBUG_PAGEALLOC PowerMac
...
NIP pata_macio_qc_prep+0xf4/0x190
LR pata_macio_qc_prep+0xfc/0x190
Call Trace:
0xc1421660 (unreliable)
ata_qc_issue+0x14c/0x2d4
__ata_scsi_queuecmd+0x200/0x53c
ata_scsi_queuecmd+0x50/0xe0
scsi_queue_rq+0x788/0xb1c
__blk_mq_issue_directly+0x58/0xf4
blk_mq_plug_issue_direct+0x8c/0x1b4
blk_mq_flush_plug_list.part.0+0x584/0x5e0
__blk_flush_plug+0xf8/0x194
__submit_bio+0x1b8/0x2e0
submit_bio_noacct_nocheck+0x230/0x304
btrfs_work_helper+0x200/0x338
process_one_work+0x1a8/0x338
worker_thread+0x364/0x4c0
kthread+0x100/0x104
start_kernel_thread+0x10/0x14
That commit increased max_segment_size to 64KB, with the justification
that the SCSI core was already using that size when PAGE_SIZE == 64KB,
and that there was existing logic to split over-sized requests.
However with a sufficiently large request, the splitting logic causes
each sg to be split into two commands in the DMA table, leading to
overflow of the DMA table, triggering the BUG_ON().
With default settings the bug doesn't trigger, because the request size
is limited by max_sectors_kb == 1280, however max_sectors_kb can be
increased, and apparently some distros do that by default using udev
rules.
Fix the bug for 4KB kernels by reverting to the old max_segment_size.
For 64KB kernels the sg_tablesize needs to be halved, to allow for the
possibility that each sg will be split into two. |