CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
In the Linux kernel, the following vulnerability has been resolved:
usb: gadget: f_fs: Remove WARN_ON in functionfs_bind
This commit addresses an issue related to below kernel panic where
panic_on_warn is enabled. It is caused by the unnecessary use of WARN_ON
in functionsfs_bind, which easily leads to the following scenarios.
1.adb_write in adbd 2. UDC write via configfs
================= =====================
->usb_ffs_open_thread() ->UDC write
->open_functionfs() ->configfs_write_iter()
->adb_open() ->gadget_dev_desc_UDC_store()
->adb_write() ->usb_gadget_register_driver_owner
->driver_register()
->StartMonitor() ->bus_add_driver()
->adb_read() ->gadget_bind_driver()
<times-out without BIND event> ->configfs_composite_bind()
->usb_add_function()
->open_functionfs() ->ffs_func_bind()
->adb_open() ->functionfs_bind()
<ffs->state !=FFS_ACTIVE>
The adb_open, adb_read, and adb_write operations are invoked from the
daemon, but trying to bind the function is a process that is invoked by
UDC write through configfs, which opens up the possibility of a race
condition between the two paths. In this race scenario, the kernel panic
occurs due to the WARN_ON from functionfs_bind when panic_on_warn is
enabled. This commit fixes the kernel panic by removing the unnecessary
WARN_ON.
Kernel panic - not syncing: kernel: panic_on_warn set ...
[ 14.542395] Call trace:
[ 14.542464] ffs_func_bind+0x1c8/0x14a8
[ 14.542468] usb_add_function+0xcc/0x1f0
[ 14.542473] configfs_composite_bind+0x468/0x588
[ 14.542478] gadget_bind_driver+0x108/0x27c
[ 14.542483] really_probe+0x190/0x374
[ 14.542488] __driver_probe_device+0xa0/0x12c
[ 14.542492] driver_probe_device+0x3c/0x220
[ 14.542498] __driver_attach+0x11c/0x1fc
[ 14.542502] bus_for_each_dev+0x104/0x160
[ 14.542506] driver_attach+0x24/0x34
[ 14.542510] bus_add_driver+0x154/0x270
[ 14.542514] driver_register+0x68/0x104
[ 14.542518] usb_gadget_register_driver_owner+0x48/0xf4
[ 14.542523] gadget_dev_desc_UDC_store+0xf8/0x144
[ 14.542526] configfs_write_iter+0xf0/0x138 |
In the Linux kernel, the following vulnerability has been resolved:
iio: pressure: zpa2326: fix information leak in triggered buffer
The 'sample' local struct is used to push data to user space from a
triggered buffer, but it has a hole between the temperature and the
timestamp (u32 pressure, u16 temperature, GAP, u64 timestamp).
This hole is never initialized.
Initialize the struct to zero before using it to avoid pushing
uninitialized information to userspace. |
In the Linux kernel, the following vulnerability has been resolved:
iio: dummy: iio_simply_dummy_buffer: fix information leak in triggered buffer
The 'data' array is allocated via kmalloc() and it is used to push data
to user space from a triggered buffer, but it does not set values for
inactive channels, as it only uses iio_for_each_active_channel()
to assign new values.
Use kzalloc for the memory allocation to avoid pushing uninitialized
information to userspace. |
In the Linux kernel, the following vulnerability has been resolved:
iio: light: vcnl4035: fix information leak in triggered buffer
The 'buffer' local array is used to push data to userspace from a
triggered buffer, but it does not set an initial value for the single
data element, which is an u16 aligned to 8 bytes. That leaves at least
4 bytes uninitialized even after writing an integer value with
regmap_read().
Initialize the array to zero before using it to avoid pushing
uninitialized information to userspace. |
In the Linux kernel, the following vulnerability has been resolved:
iio: light: bh1745: fix information leak in triggered buffer
The 'scan' local struct is used to push data to user space from a
triggered buffer, but it does not set values for inactive channels, as
it only uses iio_for_each_active_channel() to assign new values.
Initialize the struct to zero before using it to avoid pushing
uninitialized information to userspace. |
In the Linux kernel, the following vulnerability has been resolved:
iio: imu: kmx61: fix information leak in triggered buffer
The 'buffer' local array is used to push data to user space from a
triggered buffer, but it does not set values for inactive channels, as
it only uses iio_for_each_active_channel() to assign new values.
Initialize the array to zero before using it to avoid pushing
uninitialized information to userspace. |
In the Linux kernel, the following vulnerability has been resolved:
iio: adc: rockchip_saradc: fix information leak in triggered buffer
The 'data' local struct is used to push data to user space from a
triggered buffer, but it does not set values for inactive channels, as
it only uses iio_for_each_active_channel() to assign new values.
Initialize the struct to zero before using it to avoid pushing
uninitialized information to userspace. |
In the Linux kernel, the following vulnerability has been resolved:
iio: adc: ti-ads8688: fix information leak in triggered buffer
The 'buffer' local array is used to push data to user space from a
triggered buffer, but it does not set values for inactive channels, as
it only uses iio_for_each_active_channel() to assign new values.
Initialize the array to zero before using it to avoid pushing
uninitialized information to userspace. |
In the Linux kernel, the following vulnerability has been resolved:
iio: adc: ti-ads1119: fix information leak in triggered buffer
The 'scan' local struct is used to push data to user space from a
triggered buffer, but it has a hole between the sample (unsigned int)
and the timestamp. This hole is never initialized.
Initialize the struct to zero before using it to avoid pushing
uninitialized information to userspace. |
In the Linux kernel, the following vulnerability has been resolved:
af_packet: fix vlan_get_tci() vs MSG_PEEK
Blamed commit forgot MSG_PEEK case, allowing a crash [1] as found
by syzbot.
Rework vlan_get_tci() to not touch skb at all,
so that it can be used from many cpus on the same skb.
Add a const qualifier to skb argument.
[1]
skbuff: skb_under_panic: text:ffffffff8a8da482 len:32 put:14 head:ffff88807a1d5800 data:ffff88807a1d5810 tail:0x14 end:0x140 dev:<NULL>
------------[ cut here ]------------
kernel BUG at net/core/skbuff.c:206 !
Oops: invalid opcode: 0000 [#1] PREEMPT SMP KASAN PTI
CPU: 0 UID: 0 PID: 5880 Comm: syz-executor172 Not tainted 6.13.0-rc3-syzkaller-00762-g9268abe611b0 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 09/13/2024
RIP: 0010:skb_panic net/core/skbuff.c:206 [inline]
RIP: 0010:skb_under_panic+0x14b/0x150 net/core/skbuff.c:216
Code: 0b 8d 48 c7 c6 9e 6c 26 8e 48 8b 54 24 08 8b 0c 24 44 8b 44 24 04 4d 89 e9 50 41 54 41 57 41 56 e8 3a 5a 79 f7 48 83 c4 20 90 <0f> 0b 0f 1f 00 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 f3
RSP: 0018:ffffc90003baf5b8 EFLAGS: 00010286
RAX: 0000000000000087 RBX: dffffc0000000000 RCX: 8565c1eec37aa000
RDX: 0000000000000000 RSI: 0000000080000000 RDI: 0000000000000000
RBP: ffff88802616fb50 R08: ffffffff817f0a4c R09: 1ffff92000775e50
R10: dffffc0000000000 R11: fffff52000775e51 R12: 0000000000000140
R13: ffff88807a1d5800 R14: ffff88807a1d5810 R15: 0000000000000014
FS: 00007fa03261f6c0(0000) GS:ffff8880b8600000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007ffd65753000 CR3: 0000000031720000 CR4: 00000000003526f0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
skb_push+0xe5/0x100 net/core/skbuff.c:2636
vlan_get_tci+0x272/0x550 net/packet/af_packet.c:565
packet_recvmsg+0x13c9/0x1ef0 net/packet/af_packet.c:3616
sock_recvmsg_nosec net/socket.c:1044 [inline]
sock_recvmsg+0x22f/0x280 net/socket.c:1066
____sys_recvmsg+0x1c6/0x480 net/socket.c:2814
___sys_recvmsg net/socket.c:2856 [inline]
do_recvmmsg+0x426/0xab0 net/socket.c:2951
__sys_recvmmsg net/socket.c:3025 [inline]
__do_sys_recvmmsg net/socket.c:3048 [inline]
__se_sys_recvmmsg net/socket.c:3041 [inline]
__x64_sys_recvmmsg+0x199/0x250 net/socket.c:3041
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xf3/0x230 arch/x86/entry/common.c:83 |
In the Linux kernel, the following vulnerability has been resolved:
af_packet: fix vlan_get_protocol_dgram() vs MSG_PEEK
Blamed commit forgot MSG_PEEK case, allowing a crash [1] as found
by syzbot.
Rework vlan_get_protocol_dgram() to not touch skb at all,
so that it can be used from many cpus on the same skb.
Add a const qualifier to skb argument.
[1]
skbuff: skb_under_panic: text:ffffffff8a8ccd05 len:29 put:14 head:ffff88807fc8e400 data:ffff88807fc8e3f4 tail:0x11 end:0x140 dev:<NULL>
------------[ cut here ]------------
kernel BUG at net/core/skbuff.c:206 !
Oops: invalid opcode: 0000 [#1] PREEMPT SMP KASAN PTI
CPU: 1 UID: 0 PID: 5892 Comm: syz-executor883 Not tainted 6.13.0-rc4-syzkaller-00054-gd6ef8b40d075 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 09/13/2024
RIP: 0010:skb_panic net/core/skbuff.c:206 [inline]
RIP: 0010:skb_under_panic+0x14b/0x150 net/core/skbuff.c:216
Code: 0b 8d 48 c7 c6 86 d5 25 8e 48 8b 54 24 08 8b 0c 24 44 8b 44 24 04 4d 89 e9 50 41 54 41 57 41 56 e8 5a 69 79 f7 48 83 c4 20 90 <0f> 0b 0f 1f 00 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 f3
RSP: 0018:ffffc900038d7638 EFLAGS: 00010282
RAX: 0000000000000087 RBX: dffffc0000000000 RCX: 609ffd18ea660600
RDX: 0000000000000000 RSI: 0000000080000000 RDI: 0000000000000000
RBP: ffff88802483c8d0 R08: ffffffff817f0a8c R09: 1ffff9200071ae60
R10: dffffc0000000000 R11: fffff5200071ae61 R12: 0000000000000140
R13: ffff88807fc8e400 R14: ffff88807fc8e3f4 R15: 0000000000000011
FS: 00007fbac5e006c0(0000) GS:ffff8880b8700000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007fbac5e00d58 CR3: 000000001238e000 CR4: 00000000003526f0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
skb_push+0xe5/0x100 net/core/skbuff.c:2636
vlan_get_protocol_dgram+0x165/0x290 net/packet/af_packet.c:585
packet_recvmsg+0x948/0x1ef0 net/packet/af_packet.c:3552
sock_recvmsg_nosec net/socket.c:1033 [inline]
sock_recvmsg+0x22f/0x280 net/socket.c:1055
____sys_recvmsg+0x1c6/0x480 net/socket.c:2803
___sys_recvmsg net/socket.c:2845 [inline]
do_recvmmsg+0x426/0xab0 net/socket.c:2940
__sys_recvmmsg net/socket.c:3014 [inline]
__do_sys_recvmmsg net/socket.c:3037 [inline]
__se_sys_recvmmsg net/socket.c:3030 [inline]
__x64_sys_recvmmsg+0x199/0x250 net/socket.c:3030
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xf3/0x230 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x77/0x7f |
In the Linux kernel, the following vulnerability has been resolved:
ksmbd: set ATTR_CTIME flags when setting mtime
David reported that the new warning from setattr_copy_mgtime is coming
like the following.
[ 113.215316] ------------[ cut here ]------------
[ 113.215974] WARNING: CPU: 1 PID: 31 at fs/attr.c:300 setattr_copy+0x1ee/0x200
[ 113.219192] CPU: 1 UID: 0 PID: 31 Comm: kworker/1:1 Not tainted 6.13.0-rc1+ #234
[ 113.220127] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.2-3-gd478f380-rebuilt.opensuse.org 04/01/2014
[ 113.221530] Workqueue: ksmbd-io handle_ksmbd_work [ksmbd]
[ 113.222220] RIP: 0010:setattr_copy+0x1ee/0x200
[ 113.222833] Code: 24 28 49 8b 44 24 30 48 89 53 58 89 43 6c 5b 41 5c 41 5d 41 5e 41 5f 5d c3 cc cc cc cc 48 89 df e8 77 d6 ff ff e9 cd fe ff ff <0f> 0b e9 be fe ff ff 66 0
[ 113.225110] RSP: 0018:ffffaf218010fb68 EFLAGS: 00010202
[ 113.225765] RAX: 0000000000000120 RBX: ffffa446815f8568 RCX: 0000000000000003
[ 113.226667] RDX: ffffaf218010fd38 RSI: ffffa446815f8568 RDI: ffffffff94eb03a0
[ 113.227531] RBP: ffffaf218010fb90 R08: 0000001a251e217d R09: 00000000675259fa
[ 113.228426] R10: 0000000002ba8a6d R11: ffffa4468196c7a8 R12: ffffaf218010fd38
[ 113.229304] R13: 0000000000000120 R14: ffffffff94eb03a0 R15: 0000000000000000
[ 113.230210] FS: 0000000000000000(0000) GS:ffffa44739d00000(0000) knlGS:0000000000000000
[ 113.231215] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 113.232055] CR2: 00007efe0053d27e CR3: 000000000331a000 CR4: 00000000000006b0
[ 113.232926] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[ 113.233812] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[ 113.234797] Call Trace:
[ 113.235116] <TASK>
[ 113.235393] ? __warn+0x73/0xd0
[ 113.235802] ? setattr_copy+0x1ee/0x200
[ 113.236299] ? report_bug+0xf3/0x1e0
[ 113.236757] ? handle_bug+0x4d/0x90
[ 113.237202] ? exc_invalid_op+0x13/0x60
[ 113.237689] ? asm_exc_invalid_op+0x16/0x20
[ 113.238185] ? setattr_copy+0x1ee/0x200
[ 113.238692] btrfs_setattr+0x80/0x820 [btrfs]
[ 113.239285] ? get_stack_info_noinstr+0x12/0xf0
[ 113.239857] ? __module_address+0x22/0xa0
[ 113.240368] ? handle_ksmbd_work+0x6e/0x460 [ksmbd]
[ 113.240993] ? __module_text_address+0x9/0x50
[ 113.241545] ? __module_address+0x22/0xa0
[ 113.242033] ? unwind_next_frame+0x10e/0x920
[ 113.242600] ? __pfx_stack_trace_consume_entry+0x10/0x10
[ 113.243268] notify_change+0x2c2/0x4e0
[ 113.243746] ? stack_depot_save_flags+0x27/0x730
[ 113.244339] ? set_file_basic_info+0x130/0x2b0 [ksmbd]
[ 113.244993] set_file_basic_info+0x130/0x2b0 [ksmbd]
[ 113.245613] ? process_scheduled_works+0xbe/0x310
[ 113.246181] ? worker_thread+0x100/0x240
[ 113.246696] ? kthread+0xc8/0x100
[ 113.247126] ? ret_from_fork+0x2b/0x40
[ 113.247606] ? ret_from_fork_asm+0x1a/0x30
[ 113.248132] smb2_set_info+0x63f/0xa70 [ksmbd]
ksmbd is trying to set the atime and mtime via notify_change without also
setting the ctime. so This patch add ATTR_CTIME flags when setting mtime
to avoid a warning. |
In the Linux kernel, the following vulnerability has been resolved:
RDMA/uverbs: Prevent integer overflow issue
In the expression "cmd.wqe_size * cmd.wr_count", both variables are u32
values that come from the user so the multiplication can lead to integer
wrapping. Then we pass the result to uverbs_request_next_ptr() which also
could potentially wrap. The "cmd.sge_count * sizeof(struct ib_uverbs_sge)"
multiplication can also overflow on 32bit systems although it's fine on
64bit systems.
This patch does two things. First, I've re-arranged the condition in
uverbs_request_next_ptr() so that the use controlled variable "len" is on
one side of the comparison by itself without any math. Then I've modified
all the callers to use size_mul() for the multiplications. |
In the Linux kernel, the following vulnerability has been resolved:
mm/page_alloc: don't call pfn_to_page() on possibly non-existent PFN in split_large_buddy()
In split_large_buddy(), we might call pfn_to_page() on a PFN that might
not exist. In corner cases, such as when freeing the highest pageblock in
the last memory section, this could result with CONFIG_SPARSEMEM &&
!CONFIG_SPARSEMEM_EXTREME in __pfn_to_section() returning NULL and and
__section_mem_map_addr() dereferencing that NULL pointer.
Let's fix it, and avoid doing a pfn_to_page() call for the first
iteration, where we already have the page.
So far this was found by code inspection, but let's just CC stable as the
fix is easy. |
In the Linux kernel, the following vulnerability has been resolved:
arm64: ptrace: fix partial SETREGSET for NT_ARM_FPMR
Currently fpmr_set() doesn't initialize the temporary 'fpmr' variable,
and a SETREGSET call with a length of zero will leave this
uninitialized. Consequently an arbitrary value will be written back to
target->thread.uw.fpmr, potentially leaking up to 64 bits of memory from
the kernel stack. The read is limited to a specific slot on the stack,
and the issue does not provide a write mechanism.
Fix this by initializing the temporary value before copying the regset
from userspace, as for other regsets (e.g. NT_PRSTATUS, NT_PRFPREG,
NT_ARM_SYSTEM_CALL). In the case of a zero-length write, the existing
contents of FPMR will be retained.
Before this patch:
| # ./fpmr-test
| Attempting to write NT_ARM_FPMR::fpmr = 0x900d900d900d900d
| SETREGSET(nt=0x40e, len=8) wrote 8 bytes
|
| Attempting to read NT_ARM_FPMR::fpmr
| GETREGSET(nt=0x40e, len=8) read 8 bytes
| Read NT_ARM_FPMR::fpmr = 0x900d900d900d900d
|
| Attempting to write NT_ARM_FPMR (zero length)
| SETREGSET(nt=0x40e, len=0) wrote 0 bytes
|
| Attempting to read NT_ARM_FPMR::fpmr
| GETREGSET(nt=0x40e, len=8) read 8 bytes
| Read NT_ARM_FPMR::fpmr = 0xffff800083963d50
After this patch:
| # ./fpmr-test
| Attempting to write NT_ARM_FPMR::fpmr = 0x900d900d900d900d
| SETREGSET(nt=0x40e, len=8) wrote 8 bytes
|
| Attempting to read NT_ARM_FPMR::fpmr
| GETREGSET(nt=0x40e, len=8) read 8 bytes
| Read NT_ARM_FPMR::fpmr = 0x900d900d900d900d
|
| Attempting to write NT_ARM_FPMR (zero length)
| SETREGSET(nt=0x40e, len=0) wrote 0 bytes
|
| Attempting to read NT_ARM_FPMR::fpmr
| GETREGSET(nt=0x40e, len=8) read 8 bytes
| Read NT_ARM_FPMR::fpmr = 0x900d900d900d900d |
In the Linux kernel, the following vulnerability has been resolved:
arm64: ptrace: fix partial SETREGSET for NT_ARM_POE
Currently poe_set() doesn't initialize the temporary 'ctrl' variable,
and a SETREGSET call with a length of zero will leave this
uninitialized. Consequently an arbitrary value will be written back to
target->thread.por_el0, potentially leaking up to 64 bits of memory from
the kernel stack. The read is limited to a specific slot on the stack,
and the issue does not provide a write mechanism.
Fix this by initializing the temporary value before copying the regset
from userspace, as for other regsets (e.g. NT_PRSTATUS, NT_PRFPREG,
NT_ARM_SYSTEM_CALL). In the case of a zero-length write, the existing
contents of POR_EL1 will be retained.
Before this patch:
| # ./poe-test
| Attempting to write NT_ARM_POE::por_el0 = 0x900d900d900d900d
| SETREGSET(nt=0x40f, len=8) wrote 8 bytes
|
| Attempting to read NT_ARM_POE::por_el0
| GETREGSET(nt=0x40f, len=8) read 8 bytes
| Read NT_ARM_POE::por_el0 = 0x900d900d900d900d
|
| Attempting to write NT_ARM_POE (zero length)
| SETREGSET(nt=0x40f, len=0) wrote 0 bytes
|
| Attempting to read NT_ARM_POE::por_el0
| GETREGSET(nt=0x40f, len=8) read 8 bytes
| Read NT_ARM_POE::por_el0 = 0xffff8000839c3d50
After this patch:
| # ./poe-test
| Attempting to write NT_ARM_POE::por_el0 = 0x900d900d900d900d
| SETREGSET(nt=0x40f, len=8) wrote 8 bytes
|
| Attempting to read NT_ARM_POE::por_el0
| GETREGSET(nt=0x40f, len=8) read 8 bytes
| Read NT_ARM_POE::por_el0 = 0x900d900d900d900d
|
| Attempting to write NT_ARM_POE (zero length)
| SETREGSET(nt=0x40f, len=0) wrote 0 bytes
|
| Attempting to read NT_ARM_POE::por_el0
| GETREGSET(nt=0x40f, len=8) read 8 bytes
| Read NT_ARM_POE::por_el0 = 0x900d900d900d900d |
In the Linux kernel, the following vulnerability has been resolved:
arm64: ptrace: fix partial SETREGSET for NT_ARM_TAGGED_ADDR_CTRL
Currently tagged_addr_ctrl_set() doesn't initialize the temporary 'ctrl'
variable, and a SETREGSET call with a length of zero will leave this
uninitialized. Consequently tagged_addr_ctrl_set() will consume an
arbitrary value, potentially leaking up to 64 bits of memory from the
kernel stack. The read is limited to a specific slot on the stack, and
the issue does not provide a write mechanism.
As set_tagged_addr_ctrl() only accepts values where bits [63:4] zero and
rejects other values, a partial SETREGSET attempt will randomly succeed
or fail depending on the value of the uninitialized value, and the
exposure is significantly limited.
Fix this by initializing the temporary value before copying the regset
from userspace, as for other regsets (e.g. NT_PRSTATUS, NT_PRFPREG,
NT_ARM_SYSTEM_CALL). In the case of a zero-length write, the existing
value of the tagged address ctrl will be retained.
The NT_ARM_TAGGED_ADDR_CTRL regset is only visible in the
user_aarch64_view used by a native AArch64 task to manipulate another
native AArch64 task. As get_tagged_addr_ctrl() only returns an error
value when called for a compat task, tagged_addr_ctrl_get() and
tagged_addr_ctrl_set() should never observe an error value from
get_tagged_addr_ctrl(). Add a WARN_ON_ONCE() to both to indicate that
such an error would be unexpected, and error handlnig is not missing in
either case. |
In the Linux kernel, the following vulnerability has been resolved:
scsi: ufs: pltfrm: Dellocate HBA during ufshcd_pltfrm_remove()
This will ensure that the scsi host is cleaned up properly using
scsi_host_dev_release(). Otherwise, it may lead to memory leaks. |
In the Linux kernel, the following vulnerability has been resolved:
jffs2: Prevent rtime decompress memory corruption
The rtime decompression routine does not fully check bounds during the
entirety of the decompression pass and can corrupt memory outside the
decompression buffer if the compressed data is corrupted. This adds the
required check to prevent this failure mode. |
In the Linux kernel, the following vulnerability has been resolved:
net: fix memory leak in tcp_conn_request()
If inet_csk_reqsk_queue_hash_add() return false, tcp_conn_request() will
return without free the dst memory, which allocated in af_ops->route_req.
Here is the kmemleak stack:
unreferenced object 0xffff8881198631c0 (size 240):
comm "softirq", pid 0, jiffies 4299266571 (age 1802.392s)
hex dump (first 32 bytes):
00 10 9b 03 81 88 ff ff 80 98 da bc ff ff ff ff ................
81 55 18 bb ff ff ff ff 00 00 00 00 00 00 00 00 .U..............
backtrace:
[<ffffffffb93e8d4c>] kmem_cache_alloc+0x60c/0xa80
[<ffffffffba11b4c5>] dst_alloc+0x55/0x250
[<ffffffffba227bf6>] rt_dst_alloc+0x46/0x1d0
[<ffffffffba23050a>] __mkroute_output+0x29a/0xa50
[<ffffffffba23456b>] ip_route_output_key_hash+0x10b/0x240
[<ffffffffba2346bd>] ip_route_output_flow+0x1d/0x90
[<ffffffffba254855>] inet_csk_route_req+0x2c5/0x500
[<ffffffffba26b331>] tcp_conn_request+0x691/0x12c0
[<ffffffffba27bd08>] tcp_rcv_state_process+0x3c8/0x11b0
[<ffffffffba2965c6>] tcp_v4_do_rcv+0x156/0x3b0
[<ffffffffba299c98>] tcp_v4_rcv+0x1cf8/0x1d80
[<ffffffffba239656>] ip_protocol_deliver_rcu+0xf6/0x360
[<ffffffffba2399a6>] ip_local_deliver_finish+0xe6/0x1e0
[<ffffffffba239b8e>] ip_local_deliver+0xee/0x360
[<ffffffffba239ead>] ip_rcv+0xad/0x2f0
[<ffffffffba110943>] __netif_receive_skb_one_core+0x123/0x140
Call dst_release() to free the dst memory when
inet_csk_reqsk_queue_hash_add() return false in tcp_conn_request(). |