CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
In the Linux kernel, the following vulnerability has been resolved:
wifi: ath12k: fix out-of-bound access of qmi_invoke_handler()
Currently, there is no terminator entry for ath12k_qmi_msg_handlers hence
facing below KASAN warning,
==================================================================
BUG: KASAN: global-out-of-bounds in qmi_invoke_handler+0xa4/0x148
Read of size 8 at addr ffffffd00a6428d8 by task kworker/u8:2/1273
CPU: 0 PID: 1273 Comm: kworker/u8:2 Not tainted 5.4.213 #0
Workqueue: qmi_msg_handler qmi_data_ready_work
Call trace:
dump_backtrace+0x0/0x20c
show_stack+0x14/0x1c
dump_stack+0xe0/0x138
print_address_description.isra.5+0x30/0x330
__kasan_report+0x16c/0x1bc
kasan_report+0xc/0x14
__asan_load8+0xa8/0xb0
qmi_invoke_handler+0xa4/0x148
qmi_handle_message+0x18c/0x1bc
qmi_data_ready_work+0x4ec/0x528
process_one_work+0x2c0/0x440
worker_thread+0x324/0x4b8
kthread+0x210/0x228
ret_from_fork+0x10/0x18
The address belongs to the variable:
ath12k_mac_mon_status_filter_default+0x4bd8/0xfffffffffffe2300 [ath12k]
[...]
==================================================================
Add a dummy terminator entry at the end to assist the qmi_invoke_handler()
in traversing up to the terminator entry without accessing an
out-of-boundary index.
Tested-on: QCN9274 hw2.0 PCI WLAN.WBE.1.0.1-00029-QCAHKSWPL_SILICONZ-1 |
In the Linux kernel, the following vulnerability has been resolved:
bpf: Fix verifier assumptions about socket->sk
The verifier assumes that 'sk' field in 'struct socket' is valid
and non-NULL when 'socket' pointer itself is trusted and non-NULL.
That may not be the case when socket was just created and
passed to LSM socket_accept hook.
Fix this verifier assumption and adjust tests. |
In the Linux kernel, the following vulnerability has been resolved:
tracefs: Reset permissions on remount if permissions are options
There's an inconsistency with the way permissions are handled in tracefs.
Because the permissions are generated when accessed, they default to the
root inode's permission if they were never set by the user. If the user
sets the permissions, then a flag is set and the permissions are saved via
the inode (for tracefs files) or an internal attribute field (for
eventfs).
But if a remount happens that specify the permissions, all the files that
were not changed by the user gets updated, but the ones that were are not.
If the user were to remount the file system with a given permission, then
all files and directories within that file system should be updated.
This can cause security issues if a file's permission was updated but the
admin forgot about it. They could incorrectly think that remounting with
permissions set would update all files, but miss some.
For example:
# cd /sys/kernel/tracing
# chgrp 1002 current_tracer
# ls -l
[..]
-rw-r----- 1 root root 0 May 1 21:25 buffer_size_kb
-rw-r----- 1 root root 0 May 1 21:25 buffer_subbuf_size_kb
-r--r----- 1 root root 0 May 1 21:25 buffer_total_size_kb
-rw-r----- 1 root lkp 0 May 1 21:25 current_tracer
-rw-r----- 1 root root 0 May 1 21:25 dynamic_events
-r--r----- 1 root root 0 May 1 21:25 dyn_ftrace_total_info
-r--r----- 1 root root 0 May 1 21:25 enabled_functions
Where current_tracer now has group "lkp".
# mount -o remount,gid=1001 .
# ls -l
-rw-r----- 1 root tracing 0 May 1 21:25 buffer_size_kb
-rw-r----- 1 root tracing 0 May 1 21:25 buffer_subbuf_size_kb
-r--r----- 1 root tracing 0 May 1 21:25 buffer_total_size_kb
-rw-r----- 1 root lkp 0 May 1 21:25 current_tracer
-rw-r----- 1 root tracing 0 May 1 21:25 dynamic_events
-r--r----- 1 root tracing 0 May 1 21:25 dyn_ftrace_total_info
-r--r----- 1 root tracing 0 May 1 21:25 enabled_functions
Everything changed but the "current_tracer".
Add a new link list that keeps track of all the tracefs_inodes which has
the permission flags that tell if the file/dir should use the root inode's
permission or not. Then on remount, clear all the flags so that the
default behavior of using the root inode's permission is done for all
files and directories. |
Tenda F3 V12.01.01.48_multi and after is vulnerable to Buffer Overflow via the portList parameter in /goform/setNAT. |
Tenda F3 V12.01.01.48_multi and after is vulnerable to Buffer Overflow via the QosList parameter in goform/setQoS. |
Tenda F3 V12.01.01.48_multi and after is vulnerable to Buffer Overflow. via the macFilterList parameter in goform/setNAT. |
Tenda F3 V12.01.01.48_multi and after is vulnerable to Buffer Overflow via the onlineList parameter in goform/setParentControl. |
Tenda F3 V12.01.01.48_multi and after is vulnerable to Buffer Overflow via the wifiTimeClose parameter in goform/setWifi. |
rAthena is an open-source cross-platform massively multiplayer online role playing game (MMORPG) server. Versions prior to commit 2f5248b have a heap-based buffer overflow in the login server, remote attacker to overwrite adjacent session fields by sending a crafted `CA_SSO_LOGIN_REQ` with an oversized token length. This leads to immediate denial of service (crash) and it is possible to achieve remote code execution via heap corruption. Commit 2f5248b fixes the issue. |
rAthena is an open-source cross-platform massively multiplayer online role playing game (MMORPG) server. Versions prior to commit 0d89ae0 have a SQL Injection in the PartyBooking component via `WorldName` parameter. Commit 0d89ae0 fixes the issue. |
rAthena is an open-source cross-platform massively multiplayer online role playing game (MMORPG) server. Versions prior to commit 0cc348b are missing a bound check in `chclif_parse_moveCharSlot` that can result in reading and writing out of bounds using input from the user. The problem has been fixed in commit 0cc348b. |
Hono is a Web application framework that provides support for any JavaScript runtime. In versions prior to 4.9.7, a flaw in the `bodyLimit` middleware could allow bypassing the configured request body size limit when conflicting HTTP headers were present. The middleware previously prioritized the `Content-Length` header even when a `Transfer-Encoding: chunked` header was also included. According to the HTTP specification, `Content-Length` must be ignored in such cases. This discrepancy could allow oversized request bodies to bypass the configured limit. Most standards-compliant runtimes and reverse proxies may reject such malformed requests with `400 Bad Request`, so the practical impact depends on the runtime and deployment environment. If body size limits are used as a safeguard against large or malicious requests, this flaw could allow attackers to send oversized request bodies. The primary risk is denial of service (DoS) due to excessive memory or CPU consumption when handling very large requests. The implementation has been updated to align with the HTTP specification, ensuring that `Transfer-Encoding` takes precedence over `Content-Length`. The issue is fixed in Hono v4.9.7, and all users should upgrade immediately. |
Hono is a Web application framework that provides support for any JavaScript runtime. Versions 4.8.0 through 4.9.5 contain a flaw in the getPath utility function which could allow path confusion and potential bypass of proxy-level ACLs (e.g. Nginx location blocks). The original implementation relied on fixed character offsets when parsing request URLs. Under certain malformed absolute-form Request-URIs, this could lead to incorrect path extraction depending on the application and environment. If proxy ACLs are used to protect sensitive endpoints such as /admin, this flaw could have allowed unauthorized access. The confidentiality impact depends on what data is exposed: if sensitive administrative data is exposed, the impact may be high, otherwise it may be moderate. This issue is fixed in version 4.9.6. |
Hono, a web framework, prior to version 4.6.5 is vulnerable to bypass of cross-site request forgery (CSRF) middleware by a request without Content-Type header. Although the CSRF middleware verifies the Content-Type Header, Hono always considers a request without a Content-Type header to be safe. This can allow an attacker to bypass CSRF protection implemented with Hono CSRF middleware. Version 4.6.5 fixes this issue. |
Hono is a Web application framework that provides support for any JavaScript runtime. Hono CSRF middleware can be bypassed using crafted Content-Type header. MIME types are case insensitive, but isRequestedByFormElementRe only matches lower-case. As a result, attacker can bypass csrf middleware using upper-case form-like MIME type. This vulnerability is fixed in 4.5.8. |
Hono is a Web application framework that provides support for any JavaScript runtime. Prior to version 4.2.7, when using serveStatic with deno, it is possible to traverse the directory where `main.ts` is located. This can result in retrieval of unexpected files. Version 4.2.7 contains a patch for the issue. |
The adapter @hono/node-server allows you to run your Hono application on Node.js. Prior to 1.10.1, the application hangs when receiving a Host header with a value that `@hono/node-server` can't handle well. Invalid values are those that cannot be parsed by the `URL` as a hostname such as an empty string, slashes `/`, and other strings. The version 1.10.1 includes the fix for this issue. |
An issue was discovered in MariaDB MCP 0.1.0 allowing attackers to gain sensitive information via the SSE service as the SSE service lacks user validation. |
An issue was discovered in litmusautomation litmus-mcp-server thru 0.0.1 allowing unauthorized attackers to control the target's MCP service through the SSE protocol. |
yyjson through 0.8.0 has a double free, leading to remote code execution in some cases, because the pool_free function lacks loop checks. (pool_free is part of the pool series allocator, along with pool_malloc and pool_realloc.) |