| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
mptcp: Fix crash due to tcp_tsorted_anchor was initialized before release skb
Got crash when doing pressure test of mptcp:
===========================================================================
dst_release: dst:ffffa06ce6e5c058 refcnt:-1
kernel tried to execute NX-protected page - exploit attempt? (uid: 0)
BUG: unable to handle kernel paging request at ffffa06ce6e5c058
PGD 190a01067 P4D 190a01067 PUD 43fffb067 PMD 22e403063 PTE 8000000226e5c063
Oops: 0011 [#1] SMP PTI
CPU: 7 PID: 7823 Comm: kworker/7:0 Kdump: loaded Tainted: G E
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.2.1 04/01/2014
Call Trace:
? skb_release_head_state+0x68/0x100
? skb_release_all+0xe/0x30
? kfree_skb+0x32/0xa0
? mptcp_sendmsg_frag+0x57e/0x750
? __mptcp_retrans+0x21b/0x3c0
? __switch_to_asm+0x35/0x70
? mptcp_worker+0x25e/0x320
? process_one_work+0x1a7/0x360
? worker_thread+0x30/0x390
? create_worker+0x1a0/0x1a0
? kthread+0x112/0x130
? kthread_flush_work_fn+0x10/0x10
? ret_from_fork+0x35/0x40
===========================================================================
In __mptcp_alloc_tx_skb skb was allocated and skb->tcp_tsorted_anchor will
be initialized, in under memory pressure situation sk_wmem_schedule will
return false and then kfree_skb. In this case skb->_skb_refdst is not null
because_skb_refdst and tcp_tsorted_anchor are stored in the same mem, and
kfree_skb will try to release dst and cause crash. |
| Ashlar-Vellum Cobalt LI File Parsing Use-After-Free Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Ashlar-Vellum Cobalt. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file.
The specific flaw exists within the parsing of LI files. The issue results from the lack of validating the existence of an object prior to performing operations on the object. An attacker can leverage this vulnerability to execute code in the context of the current process. Was ZDI-CAN-25355. |
| Use after free in Serviceworker in Google Chrome on Desktop prior to 140.0.7339.127 allowed a remote attacker to potentially exploit heap corruption via a crafted HTML page. (Chromium security severity: Critical) |
| In the Linux kernel, the following vulnerability has been resolved:
dpll: fix pin dump crash for rebound module
When a kernel module is unbound but the pin resources were not entirely
freed (other kernel module instance of the same PCI device have had kept
the reference to that pin), and kernel module is again bound, the pin
properties would not be updated (the properties are only assigned when
memory for the pin is allocated), prop pointer still points to the
kernel module memory of the kernel module which was deallocated on the
unbind.
If the pin dump is invoked in this state, the result is a kernel crash.
Prevent the crash by storing persistent pin properties in dpll subsystem,
copy the content from the kernel module when pin is allocated, instead of
using memory of the kernel module. |
| In the Linux kernel, the following vulnerability has been resolved:
x86/fpu: Keep xfd_state in sync with MSR_IA32_XFD
Commit 672365477ae8 ("x86/fpu: Update XFD state where required") and
commit 8bf26758ca96 ("x86/fpu: Add XFD state to fpstate") introduced a
per CPU variable xfd_state to keep the MSR_IA32_XFD value cached, in
order to avoid unnecessary writes to the MSR.
On CPU hotplug MSR_IA32_XFD is reset to the init_fpstate.xfd, which
wipes out any stale state. But the per CPU cached xfd value is not
reset, which brings them out of sync.
As a consequence a subsequent xfd_update_state() might fail to update
the MSR which in turn can result in XRSTOR raising a #NM in kernel
space, which crashes the kernel.
To fix this, introduce xfd_set_state() to write xfd_state together
with MSR_IA32_XFD, and use it in all places that set MSR_IA32_XFD. |
| In the Linux kernel, the following vulnerability has been resolved:
net/mlx5: HWS, change error flow on matcher disconnect
Currently, when firmware failure occurs during matcher disconnect flow,
the error flow of the function reconnects the matcher back and returns
an error, which continues running the calling function and eventually
frees the matcher that is being disconnected.
This leads to a case where we have a freed matcher on the matchers list,
which in turn leads to use-after-free and eventual crash.
This patch fixes that by not trying to reconnect the matcher back when
some FW command fails during disconnect.
Note that we're dealing here with FW error. We can't overcome this
problem. This might lead to bad steering state (e.g. wrong connection
between matchers), and will also lead to resource leakage, as it is
the case with any other error handling during resource destruction.
However, the goal here is to allow the driver to continue and not crash
the machine with use-after-free error. |
| NVIDIA CUDA Toolkit for Windows and Linux contains a vulnerability in the nvdisam command line tool, where a user can cause nvdisasm to read freed memory by running it on a malformed ELF file. A successful exploit of this vulnerability might lead to a limited denial of service. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/vc4: kms: Clear the HVS FIFO commit pointer once done
Commit 9ec03d7f1ed3 ("drm/vc4: kms: Wait on previous FIFO users before a
commit") introduced a wait on the previous commit done on a given HVS
FIFO.
However, we never cleared that pointer once done. Since
drm_crtc_commit_put can free the drm_crtc_commit structure directly if
we were the last user, this means that it can lead to a use-after free
if we were to duplicate the state, and that stale pointer would even be
copied to the new state.
Set the pointer to NULL once we're done with the wait so that we don't
carry over a pointer to a free'd structure. |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: mpt3sas: Fix kernel panic during drive powercycle test
While looping over shost's sdev list it is possible that one
of the drives is getting removed and its sas_target object is
freed but its sdev object remains intact.
Consequently, a kernel panic can occur while the driver is trying to access
the sas_address field of sas_target object without also checking the
sas_target object for NULL. |
| In the Linux kernel, the following vulnerability has been resolved:
i2c: virtio: disable timeout handling
If a timeout is hit, it can result is incorrect data on the I2C bus
and/or memory corruptions in the guest since the device can still be
operating on the buffers it was given while the guest has freed them.
Here is, for example, the start of a slub_debug splat which was
triggered on the next transfer after one transfer was forced to timeout
by setting a breakpoint in the backend (rust-vmm/vhost-device):
BUG kmalloc-1k (Not tainted): Poison overwritten
First byte 0x1 instead of 0x6b
Allocated in virtio_i2c_xfer+0x65/0x35c age=350 cpu=0 pid=29
__kmalloc+0xc2/0x1c9
virtio_i2c_xfer+0x65/0x35c
__i2c_transfer+0x429/0x57d
i2c_transfer+0x115/0x134
i2cdev_ioctl_rdwr+0x16a/0x1de
i2cdev_ioctl+0x247/0x2ed
vfs_ioctl+0x21/0x30
sys_ioctl+0xb18/0xb41
Freed in virtio_i2c_xfer+0x32e/0x35c age=244 cpu=0 pid=29
kfree+0x1bd/0x1cc
virtio_i2c_xfer+0x32e/0x35c
__i2c_transfer+0x429/0x57d
i2c_transfer+0x115/0x134
i2cdev_ioctl_rdwr+0x16a/0x1de
i2cdev_ioctl+0x247/0x2ed
vfs_ioctl+0x21/0x30
sys_ioctl+0xb18/0xb41
There is no simple fix for this (the driver would have to always create
bounce buffers and hold on to them until the device eventually returns
the buffers), so just disable the timeout support for now. |
| In the Linux kernel, the following vulnerability has been resolved:
mm/slub: avoid zeroing outside-object freepointer for single free
Commit 284f17ac13fe ("mm/slub: handle bulk and single object freeing
separately") splits single and bulk object freeing in two functions
slab_free() and slab_free_bulk() which leads slab_free() to call
slab_free_hook() directly instead of slab_free_freelist_hook().
If `init_on_free` is set, slab_free_hook() zeroes the object.
Afterward, if `slub_debug=F` and `CONFIG_SLAB_FREELIST_HARDENED` are
set, the do_slab_free() slowpath executes freelist consistency
checks and try to decode a zeroed freepointer which leads to a
"Freepointer corrupt" detection in check_object().
During bulk free, slab_free_freelist_hook() isn't affected as it always
sets it objects freepointer using set_freepointer() to maintain its
reconstructed freelist after `init_on_free`.
For single free, object's freepointer thus needs to be avoided when
stored outside the object if `init_on_free` is set. The freepointer left
as is, check_object() may later detect an invalid pointer value due to
objects overflow.
To reproduce, set `slub_debug=FU init_on_free=1 log_level=7` on the
command line of a kernel build with `CONFIG_SLAB_FREELIST_HARDENED=y`.
dmesg sample log:
[ 10.708715] =============================================================================
[ 10.710323] BUG kmalloc-rnd-05-32 (Tainted: G B T ): Freepointer corrupt
[ 10.712695] -----------------------------------------------------------------------------
[ 10.712695]
[ 10.712695] Slab 0xffffd8bdc400d580 objects=32 used=4 fp=0xffff9d9a80356f80 flags=0x200000000000a00(workingset|slab|node=0|zone=2)
[ 10.716698] Object 0xffff9d9a80356600 @offset=1536 fp=0x7ee4f480ce0ecd7c
[ 10.716698]
[ 10.716698] Bytes b4 ffff9d9a803565f0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
[ 10.720703] Object ffff9d9a80356600: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
[ 10.720703] Object ffff9d9a80356610: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
[ 10.724696] Padding ffff9d9a8035666c: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
[ 10.724696] Padding ffff9d9a8035667c: 00 00 00 00 ....
[ 10.724696] FIX kmalloc-rnd-05-32: Object at 0xffff9d9a80356600 not freed |
| A Use After Free vulnerability affecting the PAR file reading procedure in SOLIDWORKS eDrawings on Release SOLIDWORKS Desktop 2025 could allow an attacker to execute arbitrary code while opening a specially crafted PAR file. |
| UAF vulnerability in the device node access module
Impact: Successful exploitation of this vulnerability may cause service exceptions of the device. |
| In the Linux kernel, the following vulnerability has been resolved:
rpmsg: char: Fix race between the release of rpmsg_ctrldev and cdev
struct rpmsg_ctrldev contains a struct cdev. The current code frees
the rpmsg_ctrldev struct in rpmsg_ctrldev_release_device(), but the
cdev is a managed object, therefore its release is not predictable
and the rpmsg_ctrldev could be freed before the cdev is entirely
released, as in the backtrace below.
[ 93.625603] ODEBUG: free active (active state 0) object type: timer_list hint: delayed_work_timer_fn+0x0/0x7c
[ 93.636115] WARNING: CPU: 0 PID: 12 at lib/debugobjects.c:488 debug_print_object+0x13c/0x1b0
[ 93.644799] Modules linked in: veth xt_cgroup xt_MASQUERADE rfcomm algif_hash algif_skcipher af_alg uinput ip6table_nat fuse uvcvideo videobuf2_vmalloc venus_enc venus_dec videobuf2_dma_contig hci_uart btandroid btqca snd_soc_rt5682_i2c bluetooth qcom_spmi_temp_alarm snd_soc_rt5682v
[ 93.715175] CPU: 0 PID: 12 Comm: kworker/0:1 Tainted: G B 5.4.163-lockdep #26
[ 93.723855] Hardware name: Google Lazor (rev3 - 8) with LTE (DT)
[ 93.730055] Workqueue: events kobject_delayed_cleanup
[ 93.735271] pstate: 60c00009 (nZCv daif +PAN +UAO)
[ 93.740216] pc : debug_print_object+0x13c/0x1b0
[ 93.744890] lr : debug_print_object+0x13c/0x1b0
[ 93.749555] sp : ffffffacf5bc7940
[ 93.752978] x29: ffffffacf5bc7940 x28: dfffffd000000000
[ 93.758448] x27: ffffffacdb11a800 x26: dfffffd000000000
[ 93.763916] x25: ffffffd0734f856c x24: dfffffd000000000
[ 93.769389] x23: 0000000000000000 x22: ffffffd0733c35b0
[ 93.774860] x21: ffffffd0751994a0 x20: ffffffd075ec27c0
[ 93.780338] x19: ffffffd075199100 x18: 00000000000276e0
[ 93.785814] x17: 0000000000000000 x16: dfffffd000000000
[ 93.791291] x15: ffffffffffffffff x14: 6e6968207473696c
[ 93.796768] x13: 0000000000000000 x12: ffffffd075e2b000
[ 93.802244] x11: 0000000000000001 x10: 0000000000000000
[ 93.807723] x9 : d13400dff1921900 x8 : d13400dff1921900
[ 93.813200] x7 : 0000000000000000 x6 : 0000000000000000
[ 93.818676] x5 : 0000000000000080 x4 : 0000000000000000
[ 93.824152] x3 : ffffffd0732a0fa4 x2 : 0000000000000001
[ 93.829628] x1 : ffffffacf5bc7580 x0 : 0000000000000061
[ 93.835104] Call trace:
[ 93.837644] debug_print_object+0x13c/0x1b0
[ 93.841963] __debug_check_no_obj_freed+0x25c/0x3c0
[ 93.846987] debug_check_no_obj_freed+0x18/0x20
[ 93.851669] slab_free_freelist_hook+0xbc/0x1e4
[ 93.856346] kfree+0xfc/0x2f4
[ 93.859416] rpmsg_ctrldev_release_device+0x78/0xb8
[ 93.864445] device_release+0x84/0x168
[ 93.868310] kobject_cleanup+0x12c/0x298
[ 93.872356] kobject_delayed_cleanup+0x10/0x18
[ 93.876948] process_one_work+0x578/0x92c
[ 93.881086] worker_thread+0x804/0xcf8
[ 93.884963] kthread+0x2a8/0x314
[ 93.888303] ret_from_fork+0x10/0x18
The cdev_device_add/del() API was created to address this issue (see
commit '233ed09d7fda ("chardev: add helper function to register char
devs with a struct device")'), use it instead of cdev add/del(). |
| In the Linux kernel, the following vulnerability has been resolved:
drivers/virt/acrn: fix PFNMAP PTE checks in acrn_vm_ram_map()
Patch series "mm: follow_pte() improvements and acrn follow_pte() fixes".
Patch #1 fixes a bunch of issues I spotted in the acrn driver. It
compiles, that's all I know. I'll appreciate some review and testing from
acrn folks.
Patch #2+#3 improve follow_pte(), passing a VMA instead of the MM, adding
more sanity checks, and improving the documentation. Gave it a quick test
on x86-64 using VM_PAT that ends up using follow_pte().
This patch (of 3):
We currently miss handling various cases, resulting in a dangerous
follow_pte() (previously follow_pfn()) usage.
(1) We're not checking PTE write permissions.
Maybe we should simply always require pte_write() like we do for
pin_user_pages_fast(FOLL_WRITE)? Hard to tell, so let's check for
ACRN_MEM_ACCESS_WRITE for now.
(2) We're not rejecting refcounted pages.
As we are not using MMU notifiers, messing with refcounted pages is
dangerous and can result in use-after-free. Let's make sure to reject them.
(3) We are only looking at the first PTE of a bigger range.
We only lookup a single PTE, but memmap->len may span a larger area.
Let's loop over all involved PTEs and make sure the PFN range is
actually contiguous. Reject everything else: it couldn't have worked
either way, and rather made use access PFNs we shouldn't be accessing. |
| Memory corruptions can be remotely triggered in the Control-M/Agent when SSL/TLS communication is configured.
The issue occurs in the following cases:
* Control-M/Agent 9.0.20: SSL/TLS configuration is set to the non-default setting "use_openssl=n";
* Control-M/Agent 9.0.21 and 9.0.22: Agent router configuration uses the non-default settings "JAVA_AR=N" and "use_openssl=n". |
| A vulnerability was identified in JasPer up to 4.2.5. This affects the function jpc_dec_dump of the file src/libjasper/jpc/jpc_dec.c of the component JPEG2000 File Handler. The manipulation leads to use after free. An attack has to be approached locally. The exploit has been disclosed to the public and may be used. The patch is named 8308060d3fbc1da10353ac8a95c8ea60eba9c25a. It is recommended to apply a patch to fix this issue. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amdgpu: Fix a use-after-free
looks like we forget to set ttm->sg to NULL.
Hit panic below
[ 1235.844104] general protection fault, probably for non-canonical address 0x6b6b6b6b6b6b7b4b: 0000 [#1] SMP DEBUG_PAGEALLOC NOPTI
[ 1235.989074] Call Trace:
[ 1235.991751] sg_free_table+0x17/0x20
[ 1235.995667] amdgpu_ttm_backend_unbind.cold+0x4d/0xf7 [amdgpu]
[ 1236.002288] amdgpu_ttm_backend_destroy+0x29/0x130 [amdgpu]
[ 1236.008464] ttm_tt_destroy+0x1e/0x30 [ttm]
[ 1236.013066] ttm_bo_cleanup_memtype_use+0x51/0xa0 [ttm]
[ 1236.018783] ttm_bo_release+0x262/0xa50 [ttm]
[ 1236.023547] ttm_bo_put+0x82/0xd0 [ttm]
[ 1236.027766] amdgpu_bo_unref+0x26/0x50 [amdgpu]
[ 1236.032809] amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu+0x7aa/0xd90 [amdgpu]
[ 1236.040400] kfd_ioctl_alloc_memory_of_gpu+0xe2/0x330 [amdgpu]
[ 1236.046912] kfd_ioctl+0x463/0x690 [amdgpu] |
| Microsoft Message Queuing (MSMQ) Remote Code Execution Vulnerability |
| A vulnerability has been found in NASM Netwide Assember 2.17rc0. Affected by this issue is the function do_directive of the file preproc.c. The manipulation leads to use after free. An attack has to be approached locally. The exploit has been disclosed to the public and may be used. |