| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
virtio_net: Do not send RSS key if it is not supported
There is a bug when setting the RSS options in virtio_net that can break
the whole machine, getting the kernel into an infinite loop.
Running the following command in any QEMU virtual machine with virtionet
will reproduce this problem:
# ethtool -X eth0 hfunc toeplitz
This is how the problem happens:
1) ethtool_set_rxfh() calls virtnet_set_rxfh()
2) virtnet_set_rxfh() calls virtnet_commit_rss_command()
3) virtnet_commit_rss_command() populates 4 entries for the rss
scatter-gather
4) Since the command above does not have a key, then the last
scatter-gatter entry will be zeroed, since rss_key_size == 0.
sg_buf_size = vi->rss_key_size;
5) This buffer is passed to qemu, but qemu is not happy with a buffer
with zero length, and do the following in virtqueue_map_desc() (QEMU
function):
if (!sz) {
virtio_error(vdev, "virtio: zero sized buffers are not allowed");
6) virtio_error() (also QEMU function) set the device as broken
vdev->broken = true;
7) Qemu bails out, and do not repond this crazy kernel.
8) The kernel is waiting for the response to come back (function
virtnet_send_command())
9) The kernel is waiting doing the following :
while (!virtqueue_get_buf(vi->cvq, &tmp) &&
!virtqueue_is_broken(vi->cvq))
cpu_relax();
10) None of the following functions above is true, thus, the kernel
loops here forever. Keeping in mind that virtqueue_is_broken() does
not look at the qemu `vdev->broken`, so, it never realizes that the
vitio is broken at QEMU side.
Fix it by not sending RSS commands if the feature is not available in
the device. |
| In the Linux kernel, the following vulnerability has been resolved:
arm64: tlb: Fix TLBI RANGE operand
KVM/arm64 relies on TLBI RANGE feature to flush TLBs when the dirty
pages are collected by VMM and the page table entries become write
protected during live migration. Unfortunately, the operand passed
to the TLBI RANGE instruction isn't correctly sorted out due to the
commit 117940aa6e5f ("KVM: arm64: Define kvm_tlb_flush_vmid_range()").
It leads to crash on the destination VM after live migration because
TLBs aren't flushed completely and some of the dirty pages are missed.
For example, I have a VM where 8GB memory is assigned, starting from
0x40000000 (1GB). Note that the host has 4KB as the base page size.
In the middile of migration, kvm_tlb_flush_vmid_range() is executed
to flush TLBs. It passes MAX_TLBI_RANGE_PAGES as the argument to
__kvm_tlb_flush_vmid_range() and __flush_s2_tlb_range_op(). SCALE#3
and NUM#31, corresponding to MAX_TLBI_RANGE_PAGES, isn't supported
by __TLBI_RANGE_NUM(). In this specific case, -1 has been returned
from __TLBI_RANGE_NUM() for SCALE#3/2/1/0 and rejected by the loop
in the __flush_tlb_range_op() until the variable @scale underflows
and becomes -9, 0xffff708000040000 is set as the operand. The operand
is wrong since it's sorted out by __TLBI_VADDR_RANGE() according to
invalid @scale and @num.
Fix it by extending __TLBI_RANGE_NUM() to support the combination of
SCALE#3 and NUM#31. With the changes, [-1 31] instead of [-1 30] can
be returned from the macro, meaning the TLBs for 0x200000 pages in the
above example can be flushed in one shoot with SCALE#3 and NUM#31. The
macro TLBI_RANGE_MASK is dropped since no one uses it any more. The
comments are also adjusted accordingly. |
| In the Linux kernel, the following vulnerability has been resolved:
raid1: fix use-after-free for original bio in raid1_write_request()
r1_bio->bios[] is used to record new bios that will be issued to
underlying disks, however, in raid1_write_request(), r1_bio->bios[]
will set to the original bio temporarily. Meanwhile, if blocked rdev
is set, free_r1bio() will be called causing that all r1_bio->bios[]
to be freed:
raid1_write_request()
r1_bio = alloc_r1bio(mddev, bio); -> r1_bio->bios[] is NULL
for (i = 0; i < disks; i++) -> for each rdev in conf
// first rdev is normal
r1_bio->bios[0] = bio; -> set to original bio
// second rdev is blocked
if (test_bit(Blocked, &rdev->flags))
break
if (blocked_rdev)
free_r1bio()
put_all_bios()
bio_put(r1_bio->bios[0]) -> original bio is freed
Test scripts:
mdadm -CR /dev/md0 -l1 -n4 /dev/sd[abcd] --assume-clean
fio -filename=/dev/md0 -ioengine=libaio -rw=write -bs=4k -numjobs=1 \
-iodepth=128 -name=test -direct=1
echo blocked > /sys/block/md0/md/rd2/state
Test result:
BUG bio-264 (Not tainted): Object already free
-----------------------------------------------------------------------------
Allocated in mempool_alloc_slab+0x24/0x50 age=1 cpu=1 pid=869
kmem_cache_alloc+0x324/0x480
mempool_alloc_slab+0x24/0x50
mempool_alloc+0x6e/0x220
bio_alloc_bioset+0x1af/0x4d0
blkdev_direct_IO+0x164/0x8a0
blkdev_write_iter+0x309/0x440
aio_write+0x139/0x2f0
io_submit_one+0x5ca/0xb70
__do_sys_io_submit+0x86/0x270
__x64_sys_io_submit+0x22/0x30
do_syscall_64+0xb1/0x210
entry_SYSCALL_64_after_hwframe+0x6c/0x74
Freed in mempool_free_slab+0x1f/0x30 age=1 cpu=1 pid=869
kmem_cache_free+0x28c/0x550
mempool_free_slab+0x1f/0x30
mempool_free+0x40/0x100
bio_free+0x59/0x80
bio_put+0xf0/0x220
free_r1bio+0x74/0xb0
raid1_make_request+0xadf/0x1150
md_handle_request+0xc7/0x3b0
md_submit_bio+0x76/0x130
__submit_bio+0xd8/0x1d0
submit_bio_noacct_nocheck+0x1eb/0x5c0
submit_bio_noacct+0x169/0xd40
submit_bio+0xee/0x1d0
blkdev_direct_IO+0x322/0x8a0
blkdev_write_iter+0x309/0x440
aio_write+0x139/0x2f0
Since that bios for underlying disks are not allocated yet, fix this
problem by using mempool_free() directly to free the r1_bio. |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: Fix memory leak in hci_req_sync_complete()
In 'hci_req_sync_complete()', always free the previous sync
request state before assigning reference to a new one. |
| In the Linux kernel, the following vulnerability has been resolved:
platform/chrome: cros_ec_uart: properly fix race condition
The cros_ec_uart_probe() function calls devm_serdev_device_open() before
it calls serdev_device_set_client_ops(). This can trigger a NULL pointer
dereference:
BUG: kernel NULL pointer dereference, address: 0000000000000000
...
Call Trace:
<TASK>
...
? ttyport_receive_buf
A simplified version of crashing code is as follows:
static inline size_t serdev_controller_receive_buf(struct serdev_controller *ctrl,
const u8 *data,
size_t count)
{
struct serdev_device *serdev = ctrl->serdev;
if (!serdev || !serdev->ops->receive_buf) // CRASH!
return 0;
return serdev->ops->receive_buf(serdev, data, count);
}
It assumes that if SERPORT_ACTIVE is set and serdev exists, serdev->ops
will also exist. This conflicts with the existing cros_ec_uart_probe()
logic, as it first calls devm_serdev_device_open() (which sets
SERPORT_ACTIVE), and only later sets serdev->ops via
serdev_device_set_client_ops().
Commit 01f95d42b8f4 ("platform/chrome: cros_ec_uart: fix race
condition") attempted to fix a similar race condition, but while doing
so, made the window of error for this race condition to happen much
wider.
Attempt to fix the race condition again, making sure we fully setup
before calling devm_serdev_device_open(). |
| In the Linux kernel, the following vulnerability has been resolved:
octeontx2-pf: Fix transmit scheduler resource leak
Inorder to support shaping and scheduling, Upon class creation
Netdev driver allocates trasmit schedulers.
The previous patch which added support for Round robin scheduling has
a bug due to which driver is not freeing transmit schedulers post
class deletion.
This patch fixes the same. |
| In the Linux kernel, the following vulnerability has been resolved:
bnxt_en: Fix possible memory leak in bnxt_rdma_aux_device_init()
If ulp = kzalloc() fails, the allocated edev will leak because it is
not properly assigned and the cleanup path will not be able to free it.
Fix it by assigning it properly immediately after allocation. |
| In the Linux kernel, the following vulnerability has been resolved:
af_unix: Clear stale u->oob_skb.
syzkaller started to report deadlock of unix_gc_lock after commit
4090fa373f0e ("af_unix: Replace garbage collection algorithm."), but
it just uncovers the bug that has been there since commit 314001f0bf92
("af_unix: Add OOB support").
The repro basically does the following.
from socket import *
from array import array
c1, c2 = socketpair(AF_UNIX, SOCK_STREAM)
c1.sendmsg([b'a'], [(SOL_SOCKET, SCM_RIGHTS, array("i", [c2.fileno()]))], MSG_OOB)
c2.recv(1) # blocked as no normal data in recv queue
c2.close() # done async and unblock recv()
c1.close() # done async and trigger GC
A socket sends its file descriptor to itself as OOB data and tries to
receive normal data, but finally recv() fails due to async close().
The problem here is wrong handling of OOB skb in manage_oob(). When
recvmsg() is called without MSG_OOB, manage_oob() is called to check
if the peeked skb is OOB skb. In such a case, manage_oob() pops it
out of the receive queue but does not clear unix_sock(sk)->oob_skb.
This is wrong in terms of uAPI.
Let's say we send "hello" with MSG_OOB, and "world" without MSG_OOB.
The 'o' is handled as OOB data. When recv() is called twice without
MSG_OOB, the OOB data should be lost.
>>> from socket import *
>>> c1, c2 = socketpair(AF_UNIX, SOCK_STREAM, 0)
>>> c1.send(b'hello', MSG_OOB) # 'o' is OOB data
5
>>> c1.send(b'world')
5
>>> c2.recv(5) # OOB data is not received
b'hell'
>>> c2.recv(5) # OOB date is skipped
b'world'
>>> c2.recv(5, MSG_OOB) # This should return an error
b'o'
In the same situation, TCP actually returns -EINVAL for the last
recv().
Also, if we do not clear unix_sk(sk)->oob_skb, unix_poll() always set
EPOLLPRI even though the data has passed through by previous recv().
To avoid these issues, we must clear unix_sk(sk)->oob_skb when dequeuing
it from recv queue.
The reason why the old GC did not trigger the deadlock is because the
old GC relied on the receive queue to detect the loop.
When it is triggered, the socket with OOB data is marked as GC candidate
because file refcount == inflight count (1). However, after traversing
all inflight sockets, the socket still has a positive inflight count (1),
thus the socket is excluded from candidates. Then, the old GC lose the
chance to garbage-collect the socket.
With the old GC, the repro continues to create true garbage that will
never be freed nor detected by kmemleak as it's linked to the global
inflight list. That's why we couldn't even notice the issue. |
| In the Linux kernel, the following vulnerability has been resolved:
ipv6: fix race condition between ipv6_get_ifaddr and ipv6_del_addr
Although ipv6_get_ifaddr walks inet6_addr_lst under the RCU lock, it
still means hlist_for_each_entry_rcu can return an item that got removed
from the list. The memory itself of such item is not freed thanks to RCU
but nothing guarantees the actual content of the memory is sane.
In particular, the reference count can be zero. This can happen if
ipv6_del_addr is called in parallel. ipv6_del_addr removes the entry
from inet6_addr_lst (hlist_del_init_rcu(&ifp->addr_lst)) and drops all
references (__in6_ifa_put(ifp) + in6_ifa_put(ifp)). With bad enough
timing, this can happen:
1. In ipv6_get_ifaddr, hlist_for_each_entry_rcu returns an entry.
2. Then, the whole ipv6_del_addr is executed for the given entry. The
reference count drops to zero and kfree_rcu is scheduled.
3. ipv6_get_ifaddr continues and tries to increments the reference count
(in6_ifa_hold).
4. The rcu is unlocked and the entry is freed.
5. The freed entry is returned.
Prevent increasing of the reference count in such case. The name
in6_ifa_hold_safe is chosen to mimic the existing fib6_info_hold_safe.
[ 41.506330] refcount_t: addition on 0; use-after-free.
[ 41.506760] WARNING: CPU: 0 PID: 595 at lib/refcount.c:25 refcount_warn_saturate+0xa5/0x130
[ 41.507413] Modules linked in: veth bridge stp llc
[ 41.507821] CPU: 0 PID: 595 Comm: python3 Not tainted 6.9.0-rc2.main-00208-g49563be82afa #14
[ 41.508479] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996)
[ 41.509163] RIP: 0010:refcount_warn_saturate+0xa5/0x130
[ 41.509586] Code: ad ff 90 0f 0b 90 90 c3 cc cc cc cc 80 3d c0 30 ad 01 00 75 a0 c6 05 b7 30 ad 01 01 90 48 c7 c7 38 cc 7a 8c e8 cc 18 ad ff 90 <0f> 0b 90 90 c3 cc cc cc cc 80 3d 98 30 ad 01 00 0f 85 75 ff ff ff
[ 41.510956] RSP: 0018:ffffbda3c026baf0 EFLAGS: 00010282
[ 41.511368] RAX: 0000000000000000 RBX: ffff9e9c46914800 RCX: 0000000000000000
[ 41.511910] RDX: ffff9e9c7ec29c00 RSI: ffff9e9c7ec1c900 RDI: ffff9e9c7ec1c900
[ 41.512445] RBP: ffff9e9c43660c9c R08: 0000000000009ffb R09: 00000000ffffdfff
[ 41.512998] R10: 00000000ffffdfff R11: ffffffff8ca58a40 R12: ffff9e9c4339a000
[ 41.513534] R13: 0000000000000001 R14: ffff9e9c438a0000 R15: ffffbda3c026bb48
[ 41.514086] FS: 00007fbc4cda1740(0000) GS:ffff9e9c7ec00000(0000) knlGS:0000000000000000
[ 41.514726] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 41.515176] CR2: 000056233b337d88 CR3: 000000000376e006 CR4: 0000000000370ef0
[ 41.515713] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[ 41.516252] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[ 41.516799] Call Trace:
[ 41.517037] <TASK>
[ 41.517249] ? __warn+0x7b/0x120
[ 41.517535] ? refcount_warn_saturate+0xa5/0x130
[ 41.517923] ? report_bug+0x164/0x190
[ 41.518240] ? handle_bug+0x3d/0x70
[ 41.518541] ? exc_invalid_op+0x17/0x70
[ 41.520972] ? asm_exc_invalid_op+0x1a/0x20
[ 41.521325] ? refcount_warn_saturate+0xa5/0x130
[ 41.521708] ipv6_get_ifaddr+0xda/0xe0
[ 41.522035] inet6_rtm_getaddr+0x342/0x3f0
[ 41.522376] ? __pfx_inet6_rtm_getaddr+0x10/0x10
[ 41.522758] rtnetlink_rcv_msg+0x334/0x3d0
[ 41.523102] ? netlink_unicast+0x30f/0x390
[ 41.523445] ? __pfx_rtnetlink_rcv_msg+0x10/0x10
[ 41.523832] netlink_rcv_skb+0x53/0x100
[ 41.524157] netlink_unicast+0x23b/0x390
[ 41.524484] netlink_sendmsg+0x1f2/0x440
[ 41.524826] __sys_sendto+0x1d8/0x1f0
[ 41.525145] __x64_sys_sendto+0x1f/0x30
[ 41.525467] do_syscall_64+0xa5/0x1b0
[ 41.525794] entry_SYSCALL_64_after_hwframe+0x72/0x7a
[ 41.526213] RIP: 0033:0x7fbc4cfcea9a
[ 41.526528] Code: d8 64 89 02 48 c7 c0 ff ff ff ff eb b8 0f 1f 00 f3 0f 1e fa 41 89 ca 64 8b 04 25 18 00 00 00 85 c0 75 15 b8 2c 00 00 00 0f 05 <48> 3d 00 f0 ff ff 77 7e c3 0f 1f 44 00 00 41 54 48 83 ec 30 44 89
[ 41.527942] RSP: 002b:00007f
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
pds_core: Fix pdsc_check_pci_health function to use work thread
When the driver notices fw_status == 0xff it tries to perform a PCI
reset on itself via pci_reset_function() in the context of the driver's
health thread. However, pdsc_reset_prepare calls
pdsc_stop_health_thread(), which attempts to stop/flush the health
thread. This results in a deadlock because the stop/flush will never
complete since the driver called pci_reset_function() from the health
thread context. Fix by changing the pdsc_check_pci_health_function()
to queue a newly introduced pdsc_pci_reset_thread() on the pdsc's
work queue.
Unloading the driver in the fw_down/dead state uncovered another issue,
which can be seen in the following trace:
WARNING: CPU: 51 PID: 6914 at kernel/workqueue.c:1450 __queue_work+0x358/0x440
[...]
RIP: 0010:__queue_work+0x358/0x440
[...]
Call Trace:
<TASK>
? __warn+0x85/0x140
? __queue_work+0x358/0x440
? report_bug+0xfc/0x1e0
? handle_bug+0x3f/0x70
? exc_invalid_op+0x17/0x70
? asm_exc_invalid_op+0x1a/0x20
? __queue_work+0x358/0x440
queue_work_on+0x28/0x30
pdsc_devcmd_locked+0x96/0xe0 [pds_core]
pdsc_devcmd_reset+0x71/0xb0 [pds_core]
pdsc_teardown+0x51/0xe0 [pds_core]
pdsc_remove+0x106/0x200 [pds_core]
pci_device_remove+0x37/0xc0
device_release_driver_internal+0xae/0x140
driver_detach+0x48/0x90
bus_remove_driver+0x6d/0xf0
pci_unregister_driver+0x2e/0xa0
pdsc_cleanup_module+0x10/0x780 [pds_core]
__x64_sys_delete_module+0x142/0x2b0
? syscall_trace_enter.isra.18+0x126/0x1a0
do_syscall_64+0x3b/0x90
entry_SYSCALL_64_after_hwframe+0x72/0xdc
RIP: 0033:0x7fbd9d03a14b
[...]
Fix this by preventing the devcmd reset if the FW is not running. |
| In the Linux kernel, the following vulnerability has been resolved:
net/mlx5: Properly link new fs rules into the tree
Previously, add_rule_fg would only add newly created rules from the
handle into the tree when they had a refcount of 1. On the other hand,
create_flow_handle tries hard to find and reference already existing
identical rules instead of creating new ones.
These two behaviors can result in a situation where create_flow_handle
1) creates a new rule and references it, then
2) in a subsequent step during the same handle creation references it
again,
resulting in a rule with a refcount of 2 that is not linked into the
tree, will have a NULL parent and root and will result in a crash when
the flow group is deleted because del_sw_hw_rule, invoked on rule
deletion, assumes node->parent is != NULL.
This happened in the wild, due to another bug related to incorrect
handling of duplicate pkt_reformat ids, which lead to the code in
create_flow_handle incorrectly referencing a just-added rule in the same
flow handle, resulting in the problem described above. Full details are
at [1].
This patch changes add_rule_fg to add new rules without parents into
the tree, properly initializing them and avoiding the crash. This makes
it more consistent with how rules are added to an FTE in
create_flow_handle. |
| In the Linux kernel, the following vulnerability has been resolved:
accel/ivpu: Fix deadlock in context_xa
ivpu_device->context_xa is locked both in kernel thread and IRQ context.
It requires XA_FLAGS_LOCK_IRQ flag to be passed during initialization
otherwise the lock could be acquired from a thread and interrupted by
an IRQ that locks it for the second time causing the deadlock.
This deadlock was reported by lockdep and observed in internal tests. |
| In the Linux kernel, the following vulnerability has been resolved:
dyndbg: fix old BUG_ON in >control parser
Fix a BUG_ON from 2009. Even if it looks "unreachable" (I didn't
really look), lets make sure by removing it, doing pr_err and return
-EINVAL instead. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: rtw89: fix null pointer access when abort scan
During cancel scan we might use vif that weren't scanning.
Fix this by using the actual scanning vif. |
| In the Linux kernel, the following vulnerability has been resolved:
pstore/zone: Add a null pointer check to the psz_kmsg_read
kasprintf() returns a pointer to dynamically allocated memory
which can be NULL upon failure. Ensure the allocation was successful
by checking the pointer validity. |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: btintel: Fix null ptr deref in btintel_read_version
If hci_cmd_sync_complete() is triggered and skb is NULL, then
hdev->req_skb is NULL, which will cause this issue. |
| In the Linux kernel, the following vulnerability has been resolved:
block: prevent division by zero in blk_rq_stat_sum()
The expression dst->nr_samples + src->nr_samples may
have zero value on overflow. It is necessary to add
a check to avoid division by zero.
Found by Linux Verification Center (linuxtesting.org) with Svace. |
| In the Linux kernel, the following vulnerability has been resolved:
fbmon: prevent division by zero in fb_videomode_from_videomode()
The expression htotal * vtotal can have a zero value on
overflow. It is necessary to prevent division by zero like in
fb_var_to_videomode().
Found by Linux Verification Center (linuxtesting.org) with Svace. |
| In the Linux kernel, the following vulnerability has been resolved:
media: mediatek: vcodec: Fix oops when HEVC init fails
The stateless HEVC decoder saves the instance pointer in the context
regardless if the initialization worked or not. This caused a use after
free, when the pointer is freed in case of a failure in the deinit
function.
Only store the instance pointer when the initialization was successful,
to solve this issue.
Hardware name: Acer Tomato (rev3 - 4) board (DT)
pstate: 80400009 (Nzcv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
pc : vcodec_vpu_send_msg+0x4c/0x190 [mtk_vcodec_dec]
lr : vcodec_send_ap_ipi+0x78/0x170 [mtk_vcodec_dec]
sp : ffff80008750bc20
x29: ffff80008750bc20 x28: ffff1299f6d70000 x27: 0000000000000000
x26: 0000000000000000 x25: 0000000000000000 x24: 0000000000000000
x23: ffff80008750bc98 x22: 000000000000a003 x21: ffffd45c4cfae000
x20: 0000000000000010 x19: ffff1299fd668310 x18: 000000000000001a
x17: 000000040044ffff x16: ffffd45cb15dc648 x15: 0000000000000000
x14: ffff1299c08da1c0 x13: ffffd45cb1f87a10 x12: ffffd45cb2f5fe80
x11: 0000000000000001 x10: 0000000000001b30 x9 : ffffd45c4d12b488
x8 : 1fffe25339380d81 x7 : 0000000000000001 x6 : ffff1299c9c06c00
x5 : 0000000000000132 x4 : 0000000000000000 x3 : 0000000000000000
x2 : 0000000000000010 x1 : ffff80008750bc98 x0 : 0000000000000000
Call trace:
vcodec_vpu_send_msg+0x4c/0x190 [mtk_vcodec_dec]
vcodec_send_ap_ipi+0x78/0x170 [mtk_vcodec_dec]
vpu_dec_deinit+0x1c/0x30 [mtk_vcodec_dec]
vdec_hevc_slice_deinit+0x30/0x98 [mtk_vcodec_dec]
vdec_if_deinit+0x38/0x68 [mtk_vcodec_dec]
mtk_vcodec_dec_release+0x20/0x40 [mtk_vcodec_dec]
fops_vcodec_release+0x64/0x118 [mtk_vcodec_dec]
v4l2_release+0x7c/0x100
__fput+0x80/0x2d8
__fput_sync+0x58/0x70
__arm64_sys_close+0x40/0x90
invoke_syscall+0x50/0x128
el0_svc_common.constprop.0+0x48/0xf0
do_el0_svc+0x24/0x38
el0_svc+0x38/0xd8
el0t_64_sync_handler+0xc0/0xc8
el0t_64_sync+0x1a8/0x1b0
Code: d503201f f9401660 b900127f b900227f (f9400400) |
| In the Linux kernel, the following vulnerability has been resolved:
media: mediatek: vcodec: adding lock to protect encoder context list
Add a lock for the ctx_list, to avoid accessing a NULL pointer
within the 'vpu_enc_ipi_handler' function when the ctx_list has
been deleted due to an unexpected behavior on the SCP IP block. |