Search

Search Results (319610 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2025-38662 1 Linux 1 Linux Kernel 2025-11-25 7.8 High
In the Linux kernel, the following vulnerability has been resolved: ASoC: mediatek: mt8365-dai-i2s: pass correct size to mt8365_dai_set_priv Given mt8365_dai_set_priv allocate priv_size space to copy priv_data which means we should pass mt8365_i2s_priv[i] or "struct mtk_afe_i2s_priv" instead of afe_priv which has the size of "struct mt8365_afe_private". Otherwise the KASAN complains about. [ 59.389765] BUG: KASAN: global-out-of-bounds in mt8365_dai_set_priv+0xc8/0x168 [snd_soc_mt8365_pcm] ... [ 59.394789] Call trace: [ 59.395167] dump_backtrace+0xa0/0x128 [ 59.395733] show_stack+0x20/0x38 [ 59.396238] dump_stack_lvl+0xe8/0x148 [ 59.396806] print_report+0x37c/0x5e0 [ 59.397358] kasan_report+0xac/0xf8 [ 59.397885] kasan_check_range+0xe8/0x190 [ 59.398485] asan_memcpy+0x3c/0x98 [ 59.399022] mt8365_dai_set_priv+0xc8/0x168 [snd_soc_mt8365_pcm] [ 59.399928] mt8365_dai_i2s_register+0x1e8/0x2b0 [snd_soc_mt8365_pcm] [ 59.400893] mt8365_afe_pcm_dev_probe+0x4d0/0xdf0 [snd_soc_mt8365_pcm] [ 59.401873] platform_probe+0xcc/0x228 [ 59.402442] really_probe+0x340/0x9e8 [ 59.402992] driver_probe_device+0x16c/0x3f8 [ 59.403638] driver_probe_device+0x64/0x1d8 [ 59.404256] driver_attach+0x1dc/0x4c8 [ 59.404840] bus_for_each_dev+0x100/0x190 [ 59.405442] driver_attach+0x44/0x68 [ 59.405980] bus_add_driver+0x23c/0x500 [ 59.406550] driver_register+0xf8/0x3d0 [ 59.407122] platform_driver_register+0x68/0x98 [ 59.407810] mt8365_afe_pcm_driver_init+0x2c/0xff8 [snd_soc_mt8365_pcm]
CVE-2025-38661 1 Linux 1 Linux Kernel 2025-11-25 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: platform/x86: alienware-wmi-wmax: Fix `dmi_system_id` array Add missing empty member to `awcc_dmi_table`.
CVE-2025-38660 1 Linux 1 Linux Kernel 2025-11-25 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: [ceph] parse_longname(): strrchr() expects NUL-terminated string ... and parse_longname() is not guaranteed that. That's the reason why it uses kmemdup_nul() to build the argument for kstrtou64(); the problem is, kstrtou64() is not the only thing that need it. Just get a NUL-terminated copy of the entire thing and be done with that...
CVE-2025-38717 1 Linux 1 Linux Kernel 2025-11-25 4.7 Medium
In the Linux kernel, the following vulnerability has been resolved: net: kcm: Fix race condition in kcm_unattach() syzbot found a race condition when kcm_unattach(psock) and kcm_release(kcm) are executed at the same time. kcm_unattach() is missing a check of the flag kcm->tx_stopped before calling queue_work(). If the kcm has a reserved psock, kcm_unattach() might get executed between cancel_work_sync() and unreserve_psock() in kcm_release(), requeuing kcm->tx_work right before kcm gets freed in kcm_done(). Remove kcm->tx_stopped and replace it by the less error-prone disable_work_sync().
CVE-2025-38716 1 Linux 1 Linux Kernel 2025-11-25 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: hfs: fix general protection fault in hfs_find_init() The hfs_find_init() method can trigger the crash if tree pointer is NULL: [ 45.746290][ T9787] Oops: general protection fault, probably for non-canonical address 0xdffffc0000000008: 0000 [#1] SMP KAI [ 45.747287][ T9787] KASAN: null-ptr-deref in range [0x0000000000000040-0x0000000000000047] [ 45.748716][ T9787] CPU: 2 UID: 0 PID: 9787 Comm: repro Not tainted 6.16.0-rc3 #10 PREEMPT(full) [ 45.750250][ T9787] Hardware name: QEMU Ubuntu 24.04 PC (i440FX + PIIX, 1996), BIOS 1.16.3-debian-1.16.3-2 04/01/2014 [ 45.751983][ T9787] RIP: 0010:hfs_find_init+0x86/0x230 [ 45.752834][ T9787] Code: c1 ea 03 80 3c 02 00 0f 85 9a 01 00 00 4c 8d 6b 40 48 c7 45 18 00 00 00 00 48 b8 00 00 00 00 00 fc [ 45.755574][ T9787] RSP: 0018:ffffc90015157668 EFLAGS: 00010202 [ 45.756432][ T9787] RAX: dffffc0000000000 RBX: 0000000000000000 RCX: ffffffff819a4d09 [ 45.757457][ T9787] RDX: 0000000000000008 RSI: ffffffff819acd3a RDI: ffffc900151576e8 [ 45.758282][ T9787] RBP: ffffc900151576d0 R08: 0000000000000005 R09: 0000000000000000 [ 45.758943][ T9787] R10: 0000000080000000 R11: 0000000000000001 R12: 0000000000000004 [ 45.759619][ T9787] R13: 0000000000000040 R14: ffff88802c50814a R15: 0000000000000000 [ 45.760293][ T9787] FS: 00007ffb72734540(0000) GS:ffff8880cec64000(0000) knlGS:0000000000000000 [ 45.761050][ T9787] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 45.761606][ T9787] CR2: 00007f9bd8225000 CR3: 000000010979a000 CR4: 00000000000006f0 [ 45.762286][ T9787] Call Trace: [ 45.762570][ T9787] <TASK> [ 45.762824][ T9787] hfs_ext_read_extent+0x190/0x9d0 [ 45.763269][ T9787] ? submit_bio_noacct_nocheck+0x2dd/0xce0 [ 45.763766][ T9787] ? __pfx_hfs_ext_read_extent+0x10/0x10 [ 45.764250][ T9787] hfs_get_block+0x55f/0x830 [ 45.764646][ T9787] block_read_full_folio+0x36d/0x850 [ 45.765105][ T9787] ? __pfx_hfs_get_block+0x10/0x10 [ 45.765541][ T9787] ? const_folio_flags+0x5b/0x100 [ 45.765972][ T9787] ? __pfx_hfs_read_folio+0x10/0x10 [ 45.766415][ T9787] filemap_read_folio+0xbe/0x290 [ 45.766840][ T9787] ? __pfx_filemap_read_folio+0x10/0x10 [ 45.767325][ T9787] ? __filemap_get_folio+0x32b/0xbf0 [ 45.767780][ T9787] do_read_cache_folio+0x263/0x5c0 [ 45.768223][ T9787] ? __pfx_hfs_read_folio+0x10/0x10 [ 45.768666][ T9787] read_cache_page+0x5b/0x160 [ 45.769070][ T9787] hfs_btree_open+0x491/0x1740 [ 45.769481][ T9787] hfs_mdb_get+0x15e2/0x1fb0 [ 45.769877][ T9787] ? __pfx_hfs_mdb_get+0x10/0x10 [ 45.770316][ T9787] ? find_held_lock+0x2b/0x80 [ 45.770731][ T9787] ? lockdep_init_map_type+0x5c/0x280 [ 45.771200][ T9787] ? lockdep_init_map_type+0x5c/0x280 [ 45.771674][ T9787] hfs_fill_super+0x38e/0x720 [ 45.772092][ T9787] ? __pfx_hfs_fill_super+0x10/0x10 [ 45.772549][ T9787] ? snprintf+0xbe/0x100 [ 45.772931][ T9787] ? __pfx_snprintf+0x10/0x10 [ 45.773350][ T9787] ? do_raw_spin_lock+0x129/0x2b0 [ 45.773796][ T9787] ? find_held_lock+0x2b/0x80 [ 45.774215][ T9787] ? set_blocksize+0x40a/0x510 [ 45.774636][ T9787] ? sb_set_blocksize+0x176/0x1d0 [ 45.775087][ T9787] ? setup_bdev_super+0x369/0x730 [ 45.775533][ T9787] get_tree_bdev_flags+0x384/0x620 [ 45.775985][ T9787] ? __pfx_hfs_fill_super+0x10/0x10 [ 45.776453][ T9787] ? __pfx_get_tree_bdev_flags+0x10/0x10 [ 45.776950][ T9787] ? bpf_lsm_capable+0x9/0x10 [ 45.777365][ T9787] ? security_capable+0x80/0x260 [ 45.777803][ T9787] vfs_get_tree+0x8e/0x340 [ 45.778203][ T9787] path_mount+0x13de/0x2010 [ 45.778604][ T9787] ? kmem_cache_free+0x2b0/0x4c0 [ 45.779052][ T9787] ? __pfx_path_mount+0x10/0x10 [ 45.779480][ T9787] ? getname_flags.part.0+0x1c5/0x550 [ 45.779954][ T9787] ? putname+0x154/0x1a0 [ 45.780335][ T9787] __x64_sys_mount+0x27b/0x300 [ 45.780758][ T9787] ? __pfx___x64_sys_mount+0x10/0x10 [ 45.781232][ T9787] ---truncated---
CVE-2025-38710 1 Linux 1 Linux Kernel 2025-11-25 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: gfs2: Validate i_depth for exhash directories A fuzzer test introduced corruption that ends up with a depth of 0 in dir_e_read(), causing an undefined shift by 32 at: index = hash >> (32 - dip->i_depth); As calculated in an open-coded way in dir_make_exhash(), the minimum depth for an exhash directory is ilog2(sdp->sd_hash_ptrs) and 0 is invalid as sdp->sd_hash_ptrs is fixed as sdp->bsize / 16 at mount time. So we can avoid the undefined behaviour by checking for depth values lower than the minimum in gfs2_dinode_in(). Values greater than the maximum are already being checked for there. Also switch the calculation in dir_make_exhash() to use ilog2() to clarify how the depth is calculated. Tested with the syzkaller repro.c and xfstests '-g quick'.
CVE-2025-38682 1 Linux 1 Linux Kernel 2025-11-25 7.8 High
In the Linux kernel, the following vulnerability has been resolved: i2c: core: Fix double-free of fwnode in i2c_unregister_device() Before commit df6d7277e552 ("i2c: core: Do not dereference fwnode in struct device"), i2c_unregister_device() only called fwnode_handle_put() on of_node-s in the form of calling of_node_put(client->dev.of_node). But after this commit the i2c_client's fwnode now unconditionally gets fwnode_handle_put() on it. When the i2c_client has no primary (ACPI / OF) fwnode but it does have a software fwnode, the software-node will be the primary node and fwnode_handle_put() will put() it. But for the software fwnode device_remove_software_node() will also put() it leading to a double free: [ 82.665598] ------------[ cut here ]------------ [ 82.665609] refcount_t: underflow; use-after-free. [ 82.665808] WARNING: CPU: 3 PID: 1502 at lib/refcount.c:28 refcount_warn_saturate+0xba/0x11 ... [ 82.666830] RIP: 0010:refcount_warn_saturate+0xba/0x110 ... [ 82.666962] <TASK> [ 82.666971] i2c_unregister_device+0x60/0x90 Fix this by not calling fwnode_handle_put() when the primary fwnode is a software-node.
CVE-2025-38678 1 Linux 1 Linux Kernel 2025-11-25 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: netfilter: nf_tables: reject duplicate device on updates A chain/flowtable update with duplicated devices in the same batch is possible. Unfortunately, netdev event path only removes the first device that is found, leaving unregistered the hook of the duplicated device. Check if a duplicated device exists in the transaction batch, bail out with EEXIST in such case. WARNING is hit when unregistering the hook: [49042.221275] WARNING: CPU: 4 PID: 8425 at net/netfilter/core.c:340 nf_hook_entry_head+0xaa/0x150 [49042.221375] CPU: 4 UID: 0 PID: 8425 Comm: nft Tainted: G S 6.16.0+ #170 PREEMPT(full) [...] [49042.221382] RIP: 0010:nf_hook_entry_head+0xaa/0x150
CVE-2025-38675 1 Linux 1 Linux Kernel 2025-11-25 4.7 Medium
In the Linux kernel, the following vulnerability has been resolved: xfrm: state: initialize state_ptrs earlier in xfrm_state_find In case of preemption, xfrm_state_look_at will find a different pcpu_id and look up states for that other CPU. If we matched a state for CPU2 in the state_cache while the lookup started on CPU1, we will jump to "found", but the "best" state that we got will be ignored and we will enter the "acquire" block. This block uses state_ptrs, which isn't initialized at this point. Let's initialize state_ptrs just after taking rcu_read_lock. This will also prevent a possible misuse in the future, if someone adjusts this function.
CVE-2025-38674 1 Linux 1 Linux Kernel 2025-11-25 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: Revert "drm/prime: Use dma_buf from GEM object instance" This reverts commit f83a9b8c7fd0557b0c50784bfdc1bbe9140c9bf8. The dma_buf field in struct drm_gem_object is not stable over the object instance's lifetime. The field becomes NULL when user space releases the final GEM handle on the buffer object. This resulted in a NULL-pointer deref. Workarounds in commit 5307dce878d4 ("drm/gem: Acquire references on GEM handles for framebuffers") and commit f6bfc9afc751 ("drm/framebuffer: Acquire internal references on GEM handles") only solved the problem partially. They especially don't work for buffer objects without a DRM framebuffer associated. Hence, this revert to going back to using .import_attach->dmabuf. v3: - cc stable
CVE-2025-39753 1 Linux 1 Linux Kernel 2025-11-25 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: gfs2: Set .migrate_folio in gfs2_{rgrp,meta}_aops Clears up the warning added in 7ee3647243e5 ("migrate: Remove call to ->writepage") that occurs in various xfstests, causing "something found in dmesg" failures. [ 341.136573] gfs2_meta_aops does not implement migrate_folio [ 341.136953] WARNING: CPU: 1 PID: 36 at mm/migrate.c:944 move_to_new_folio+0x2f8/0x300
CVE-2025-38737 1 Linux 1 Linux Kernel 2025-11-25 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: cifs: Fix oops due to uninitialised variable Fix smb3_init_transform_rq() to initialise buffer to NULL before calling netfs_alloc_folioq_buffer() as netfs assumes it can append to the buffer it is given. Setting it to NULL means it should start a fresh buffer, but the value is currently undefined.
CVE-2025-38734 1 Linux 1 Linux Kernel 2025-11-25 7.8 High
In the Linux kernel, the following vulnerability has been resolved: net/smc: fix UAF on smcsk after smc_listen_out() BPF CI testing report a UAF issue: [ 16.446633] BUG: kernel NULL pointer dereference, address: 000000000000003 0 [ 16.447134] #PF: supervisor read access in kernel mod e [ 16.447516] #PF: error_code(0x0000) - not-present pag e [ 16.447878] PGD 0 P4D 0 [ 16.448063] Oops: Oops: 0000 [#1] PREEMPT SMP NOPT I [ 16.448409] CPU: 0 UID: 0 PID: 9 Comm: kworker/0:1 Tainted: G OE 6.13.0-rc3-g89e8a75fda73-dirty #4 2 [ 16.449124] Tainted: [O]=OOT_MODULE, [E]=UNSIGNED_MODUL E [ 16.449502] Hardware name: QEMU Ubuntu 24.04 PC (i440FX + PIIX, 1996), BIOS 1.16.3-debian-1.16.3-2 04/01/201 4 [ 16.450201] Workqueue: smc_hs_wq smc_listen_wor k [ 16.450531] RIP: 0010:smc_listen_work+0xc02/0x159 0 [ 16.452158] RSP: 0018:ffffb5ab40053d98 EFLAGS: 0001024 6 [ 16.452526] RAX: 0000000000000001 RBX: 0000000000000002 RCX: 000000000000030 0 [ 16.452994] RDX: 0000000000000280 RSI: 00003513840053f0 RDI: 000000000000000 0 [ 16.453492] RBP: ffffa097808e3800 R08: ffffa09782dba1e0 R09: 000000000000000 5 [ 16.453987] R10: 0000000000000000 R11: 0000000000000000 R12: ffffa0978274640 0 [ 16.454497] R13: 0000000000000000 R14: 0000000000000000 R15: ffffa09782d4092 0 [ 16.454996] FS: 0000000000000000(0000) GS:ffffa097bbc00000(0000) knlGS:000000000000000 0 [ 16.455557] CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003 3 [ 16.455961] CR2: 0000000000000030 CR3: 0000000102788004 CR4: 0000000000770ef 0 [ 16.456459] PKRU: 5555555 4 [ 16.456654] Call Trace : [ 16.456832] <TASK > [ 16.456989] ? __die+0x23/0x7 0 [ 16.457215] ? page_fault_oops+0x180/0x4c 0 [ 16.457508] ? __lock_acquire+0x3e6/0x249 0 [ 16.457801] ? exc_page_fault+0x68/0x20 0 [ 16.458080] ? asm_exc_page_fault+0x26/0x3 0 [ 16.458389] ? smc_listen_work+0xc02/0x159 0 [ 16.458689] ? smc_listen_work+0xc02/0x159 0 [ 16.458987] ? lock_is_held_type+0x8f/0x10 0 [ 16.459284] process_one_work+0x1ea/0x6d 0 [ 16.459570] worker_thread+0x1c3/0x38 0 [ 16.459839] ? __pfx_worker_thread+0x10/0x1 0 [ 16.460144] kthread+0xe0/0x11 0 [ 16.460372] ? __pfx_kthread+0x10/0x1 0 [ 16.460640] ret_from_fork+0x31/0x5 0 [ 16.460896] ? __pfx_kthread+0x10/0x1 0 [ 16.461166] ret_from_fork_asm+0x1a/0x3 0 [ 16.461453] </TASK > [ 16.461616] Modules linked in: bpf_testmod(OE) [last unloaded: bpf_testmod(OE) ] [ 16.462134] CR2: 000000000000003 0 [ 16.462380] ---[ end trace 0000000000000000 ]--- [ 16.462710] RIP: 0010:smc_listen_work+0xc02/0x1590 The direct cause of this issue is that after smc_listen_out_connected(), newclcsock->sk may be NULL since it will releases the smcsk. Therefore, if the application closes the socket immediately after accept, newclcsock->sk can be NULL. A possible execution order could be as follows: smc_listen_work | userspace ----------------------------------------------------------------- lock_sock(sk) | smc_listen_out_connected() | | \- smc_listen_out | | | \- release_sock | | |- sk->sk_data_ready() | | fd = accept(); | close(fd); | \- socket->sk = NULL; /* newclcsock->sk is NULL now */ SMC_STAT_SERV_SUCC_INC(sock_net(newclcsock->sk)) Since smc_listen_out_connected() will not fail, simply swapping the order of the code can easily fix this issue.
CVE-2025-38733 1 Linux 1 Linux Kernel 2025-11-25 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: s390/mm: Do not map lowcore with identity mapping Since the identity mapping is pinned to address zero the lowcore is always also mapped to address zero, this happens regardless of the relocate_lowcore command line option. If the option is specified the lowcore is mapped twice, instead of only once. This means that NULL pointer accesses will succeed instead of causing an exception (low address protection still applies, but covers only parts). To fix this never map the first two pages of physical memory with the identity mapping.
CVE-2025-38731 1 Linux 1 Linux Kernel 2025-11-25 7.8 High
In the Linux kernel, the following vulnerability has been resolved: drm/xe: Fix vm_bind_ioctl double free bug If the argument check during an array bind fails, the bind_ops are freed twice as seen below. Fix this by setting bind_ops to NULL after freeing. ================================================================== BUG: KASAN: double-free in xe_vm_bind_ioctl+0x1b2/0x21f0 [xe] Free of addr ffff88813bb9b800 by task xe_vm/14198 CPU: 5 UID: 0 PID: 14198 Comm: xe_vm Not tainted 6.16.0-xe-eudebug-cmanszew+ #520 PREEMPT(full) Hardware name: Intel Corporation Alder Lake Client Platform/AlderLake-P DDR5 RVP, BIOS ADLPFWI1.R00.2411.A02.2110081023 10/08/2021 Call Trace: <TASK> dump_stack_lvl+0x82/0xd0 print_report+0xcb/0x610 ? __virt_addr_valid+0x19a/0x300 ? xe_vm_bind_ioctl+0x1b2/0x21f0 [xe] kasan_report_invalid_free+0xc8/0xf0 ? xe_vm_bind_ioctl+0x1b2/0x21f0 [xe] ? xe_vm_bind_ioctl+0x1b2/0x21f0 [xe] check_slab_allocation+0x102/0x130 kfree+0x10d/0x440 ? should_fail_ex+0x57/0x2f0 ? xe_vm_bind_ioctl+0x1b2/0x21f0 [xe] xe_vm_bind_ioctl+0x1b2/0x21f0 [xe] ? __pfx_xe_vm_bind_ioctl+0x10/0x10 [xe] ? __lock_acquire+0xab9/0x27f0 ? lock_acquire+0x165/0x300 ? drm_dev_enter+0x53/0xe0 [drm] ? find_held_lock+0x2b/0x80 ? drm_dev_exit+0x30/0x50 [drm] ? drm_ioctl_kernel+0x128/0x1c0 [drm] drm_ioctl_kernel+0x128/0x1c0 [drm] ? __pfx_xe_vm_bind_ioctl+0x10/0x10 [xe] ? find_held_lock+0x2b/0x80 ? __pfx_drm_ioctl_kernel+0x10/0x10 [drm] ? should_fail_ex+0x57/0x2f0 ? __pfx_xe_vm_bind_ioctl+0x10/0x10 [xe] drm_ioctl+0x352/0x620 [drm] ? __pfx_drm_ioctl+0x10/0x10 [drm] ? __pfx_rpm_resume+0x10/0x10 ? do_raw_spin_lock+0x11a/0x1b0 ? find_held_lock+0x2b/0x80 ? __pm_runtime_resume+0x61/0xc0 ? rcu_is_watching+0x20/0x50 ? trace_irq_enable.constprop.0+0xac/0xe0 xe_drm_ioctl+0x91/0xc0 [xe] __x64_sys_ioctl+0xb2/0x100 ? rcu_is_watching+0x20/0x50 do_syscall_64+0x68/0x2e0 entry_SYSCALL_64_after_hwframe+0x76/0x7e RIP: 0033:0x7fa9acb24ded (cherry picked from commit a01b704527c28a2fd43a17a85f8996b75ec8492a)
CVE-2025-38730 1 Linux 1 Linux Kernel 2025-11-25 7.8 High
In the Linux kernel, the following vulnerability has been resolved: io_uring/net: commit partial buffers on retry Ring provided buffers are potentially only valid within the single execution context in which they were acquired. io_uring deals with this and invalidates them on retry. But on the networking side, if MSG_WAITALL is set, or if the socket is of the streaming type and too little was processed, then it will hang on to the buffer rather than recycle or commit it. This is problematic for two reasons: 1) If someone unregisters the provided buffer ring before a later retry, then the req->buf_list will no longer be valid. 2) If multiple sockers are using the same buffer group, then multiple receives can consume the same memory. This can cause data corruption in the application, as either receive could land in the same userspace buffer. Fix this by disallowing partial retries from pinning a provided buffer across multiple executions, if ring provided buffers are used.
CVE-2025-38726 1 Linux 1 Linux Kernel 2025-11-25 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: net: ftgmac100: fix potential NULL pointer access in ftgmac100_phy_disconnect After the call to phy_disconnect() netdev->phydev is reset to NULL. So fixed_phy_unregister() would be called with a NULL pointer as argument. Therefore cache the phy_device before this call.
CVE-2025-38722 1 Linux 1 Linux Kernel 2025-11-25 7.8 High
In the Linux kernel, the following vulnerability has been resolved: habanalabs: fix UAF in export_dmabuf() As soon as we'd inserted a file reference into descriptor table, another thread could close it. That's fine for the case when all we are doing is returning that descriptor to userland (it's a race, but it's a userland race and there's nothing the kernel can do about it). However, if we follow fd_install() with any kind of access to objects that would be destroyed on close (be it the struct file itself or anything destroyed by its ->release()), we have a UAF. dma_buf_fd() is a combination of reserving a descriptor and fd_install(). habanalabs export_dmabuf() calls it and then proceeds to access the objects destroyed on close. In particular, it grabs an extra reference to another struct file that will be dropped as part of ->release() for ours; that "will be" is actually "might have already been". Fix that by reserving descriptor before anything else and do fd_install() only when everything had been set up. As a side benefit, we no longer have the failure exit with file already created, but reference to underlying file (as well as ->dmabuf_export_cnt, etc.) not grabbed yet; unlike dma_buf_fd(), fd_install() can't fail.
CVE-2025-38720 1 Linux 1 Linux Kernel 2025-11-25 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: net: hibmcge: fix rtnl deadlock issue Currently, the hibmcge netdev acquires the rtnl_lock in pci_error_handlers.reset_prepare() and releases it in pci_error_handlers.reset_done(). However, in the PCI framework: pci_reset_bus - __pci_reset_slot - pci_slot_save_and_disable_locked - pci_dev_save_and_disable - err_handler->reset_prepare(dev); In pci_slot_save_and_disable_locked(): list_for_each_entry(dev, &slot->bus->devices, bus_list) { if (!dev->slot || dev->slot!= slot) continue; pci_dev_save_and_disable(dev); if (dev->subordinate) pci_bus_save_and_disable_locked(dev->subordinate); } This will iterate through all devices under the current bus and execute err_handler->reset_prepare(), causing two devices of the hibmcge driver to sequentially request the rtnl_lock, leading to a deadlock. Since the driver now executes netif_device_detach() before the reset process, it will not concurrently with other netdev APIs, so there is no need to hold the rtnl_lock now. Therefore, this patch removes the rtnl_lock during the reset process and adjusts the position of HBG_NIC_STATE_RESETTING to ensure that multiple resets are not executed concurrently.
CVE-2025-39698 1 Linux 1 Linux Kernel 2025-11-25 8.8 High
In the Linux kernel, the following vulnerability has been resolved: io_uring/futex: ensure io_futex_wait() cleans up properly on failure The io_futex_data is allocated upfront and assigned to the io_kiocb async_data field, but the request isn't marked with REQ_F_ASYNC_DATA at that point. Those two should always go together, as the flag tells io_uring whether the field is valid or not. Additionally, on failure cleanup, the futex handler frees the data but does not clear ->async_data. Clear the data and the flag in the error path as well. Thanks to Trend Micro Zero Day Initiative and particularly ReDress for reporting this.