CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
OpenPrinting CUPS is an open source printing system for Linux and other Unix-like operating systems. In versions 2.4.8 and earlier, when starting the cupsd server with a Listen configuration item pointing to a symbolic link, the cupsd process can be caused to perform an arbitrary chmod of the provided argument, providing world-writable access to the target. Given that cupsd is often running as root, this can result in the change of permission of any user or system files to be world writable. Given the aforementioned Ubuntu AppArmor context, on such systems this vulnerability is limited to those files modifiable by the cupsd process. In that specific case it was found to be possible to turn the configuration of the Listen argument into full control over the cupsd.conf and cups-files.conf configuration files. By later setting the User and Group arguments in cups-files.conf, and printing with a printer configured by PPD with a `FoomaticRIPCommandLine` argument, arbitrary user and group (not root) command execution could be achieved, which can further be used on Ubuntu systems to achieve full root command execution. Commit ff1f8a623e090dee8a8aadf12a6a4b25efac143d contains a patch for the issue. |
It was identified that if a cross-cluster API key https://www.elastic.co/guide/en/elasticsearch/reference/8.14/security-api-create-cross-cluster-api-key.html#security-api-create-cross-cluster-api-key-request-body restricts search for a given index using the query or the field_security parameter, and the same cross-cluster API key also grants replication for the same index, the search restrictions are not enforced during cross cluster search operations and search results may include documents and terms that should not be returned.
This issue only affects the API key based security model for remote clusters https://www.elastic.co/guide/en/elasticsearch/reference/8.14/remote-clusters.html#remote-clusters-security-models that was previously a beta feature and is released as GA with 8.14.0 |
NVIDIA Triton Inference Server for Linux and Windows contains a vulnerability where a user can inject forged logs and executable commands by injecting arbitrary data as a new log entry. A successful exploit of this vulnerability might lead to code execution, denial of service, escalation of privileges, information disclosure, and data tampering. |
NVIDIA Triton Inference Server for Linux contains a vulnerability where a user may cause an incorrect Initialization of resource by network issue. A successful exploit of this vulnerability may lead to information disclosure. |
Nextcloud server is a self hosted personal cloud system. Under some circumstance it was possible to bypass the second factor of 2FA after successfully providing the user credentials. It is recommended that the Nextcloud Server is upgraded to 26.0.13, 27.1.8 or 28.0.4 and Nextcloud Enterprise Server is upgraded to 21.0.9.17, 22.2.10.22, 23.0.12.17, 24.0.12.13, 25.0.13.8, 26.0.13, 27.1.8 or 28.0.4. |
OpenJPEG is an open-source JPEG 2000 codec. In OpenJPEG from 2.5.1 through 2.5.3, a call to opj_jp2_read_header may lead to OOB heap memory write when the data stream p_stream is too short and p_image is not initialized. |
OpenCV is an Open Source Computer Vision Library. Versions 4.10.0 and 4.11.0 have an uninitialized pointer variable on stack that may lead to arbitrary heap buffer write when reading crafted JPEG images. Version 4.12.0 fixes the vulnerability. |
Flock Safety Bravo Edge AI Compute Device BRAVO_00.00_local_20241017 ships with Secure Boot disabled. This allows an attacker to flash modified firmware with no cryptographic protections. |
Flock Safety Bravo Edge AI Compute Device BRAVO_00.00_local_20241017 ships with its bootloader unlocked. This permits bypass of Android Verified Boot (AVB) and allows direct modification of partitions. |
Flock Safety Bravo Edge AI Compute Device BRAVO_00.00_local_20241017 accepts the default Thundercomm TurboX 6490 Firehose loader in EDL/QDL mode. This enables attackers with physical access to flash arbitrary firmware, dump partitions, and bypass bootloader and OS security controls. |
libsmb2 6.2+ is vulnerable to Buffer Overflow. When processing SMB2 chained PDUs (NextCommand), libsmb2 repeatedly calls smb2_add_iovector() to append to a fixed-size iovec array without checking the upper bound of v->niov (SMB2_MAX_VECTORS=256). An attacker can craft responses with many chained PDUs to overflow v->niov and perform heap out-of-bounds writes, causing memory corruption, crashes, and potentially arbitrary code execution. The SMB2_OPLOCK_BREAK path bypasses message ID validation. |
An issue was discovered in chinabugotech hutool before 5.8.4 allowing attackers to execute arbitrary expressions that lead to arbitrary method invocation and potentially remote code execution (RCE) via the QLExpressEngine class. |
An issue in petstore v.1.0.7 allows a remote attacker to execute arbitrary code via accessing a non-existent endpoint/cart, the server returns a 404-error page exposing sensitive information including the Servlet name (default) and server version |
Cross Site Scripting vulnerability in petstore v.1.0.7 allows a remote attacker to execute arbitrary code via a crafted script to the /api/v3/pet |
In the Linux kernel, the following vulnerability has been resolved:
thermal: testing: Initialize some variables annoteded with _free()
Variables annotated with __free() need to be initialized if the function
can return before they get updated for the first time or the attempt to
free the memory pointed to by them upon function return may crash the
kernel.
Fix this issue in some places in the thermal testing code. |
In the Linux kernel, the following vulnerability has been resolved:
powerpc/fadump: Move fadump_cma_init to setup_arch() after initmem_init()
During early init CMA_MIN_ALIGNMENT_BYTES can be PAGE_SIZE,
since pageblock_order is still zero and it gets initialized
later during initmem_init() e.g.
setup_arch() -> initmem_init() -> sparse_init() -> set_pageblock_order()
One such use case where this causes issue is -
early_setup() -> early_init_devtree() -> fadump_reserve_mem() -> fadump_cma_init()
This causes CMA memory alignment check to be bypassed in
cma_init_reserved_mem(). Then later cma_activate_area() can hit
a VM_BUG_ON_PAGE(pfn & ((1 << order) - 1)) if the reserved memory
area was not pageblock_order aligned.
Fix it by moving the fadump_cma_init() after initmem_init(),
where other such cma reservations also gets called.
<stack trace>
==============
page: refcount:0 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x10010
flags: 0x13ffff800000000(node=1|zone=0|lastcpupid=0x7ffff) CMA
raw: 013ffff800000000 5deadbeef0000100 5deadbeef0000122 0000000000000000
raw: 0000000000000000 0000000000000000 00000000ffffffff 0000000000000000
page dumped because: VM_BUG_ON_PAGE(pfn & ((1 << order) - 1))
------------[ cut here ]------------
kernel BUG at mm/page_alloc.c:778!
Call Trace:
__free_one_page+0x57c/0x7b0 (unreliable)
free_pcppages_bulk+0x1a8/0x2c8
free_unref_page_commit+0x3d4/0x4e4
free_unref_page+0x458/0x6d0
init_cma_reserved_pageblock+0x114/0x198
cma_init_reserved_areas+0x270/0x3e0
do_one_initcall+0x80/0x2f8
kernel_init_freeable+0x33c/0x530
kernel_init+0x34/0x26c
ret_from_kernel_user_thread+0x14/0x1c |
In the Linux kernel, the following vulnerability has been resolved:
ASoC: mediatek: Check num_codecs is not zero to avoid panic during probe
Following commit 13f58267cda3 ("ASoC: soc.h: don't create dummy
Component via COMP_DUMMY()"), COMP_DUMMY() became an array with zero
length, and only gets populated with the dummy struct after the card is
registered. Since the sound card driver's probe happens before the card
registration, accessing any of the members of a dummy component during
probe will result in undefined behavior.
This can be observed in the mt8188 and mt8195 machine sound drivers. By
omitting a dai link subnode in the sound card's node in the Devicetree,
the default uninitialized dummy codec is used, and when its dai_name
pointer gets passed to strcmp() it results in a null pointer dereference
and a kernel panic.
In addition to that, set_card_codec_info() in the generic helpers file,
mtk-soundcard-driver.c, will populate a dai link with a dummy codec when
a dai link node is present in DT but with no codec property.
The result is that at probe time, a dummy codec can either be
uninitialized with num_codecs = 0, or be an initialized dummy codec,
with num_codecs = 1 and dai_name = "snd-soc-dummy-dai". In order to
accommodate for both situations, check that num_codecs is not zero
before accessing the codecs' fields but still check for the codec's dai
name against "snd-soc-dummy-dai" as needed.
While at it, also drop the check that dai_name is not null in the mt8192
driver, introduced in commit 4d4e1b6319e5 ("ASoC: mediatek: mt8192:
Check existence of dai_name before dereferencing"), as it is actually
redundant given the preceding num_codecs != 0 check. |
In the Linux kernel, the following vulnerability has been resolved:
s390/pci: Fix potential double remove of hotplug slot
In commit 6ee600bfbe0f ("s390/pci: remove hotplug slot when releasing the
device") the zpci_exit_slot() was moved from zpci_device_reserved() to
zpci_release_device() with the intention of keeping the hotplug slot
around until the device is actually removed.
Now zpci_release_device() is only called once all references are
dropped. Since the zPCI subsystem only drops its reference once the
device is in the reserved state it follows that zpci_release_device()
must only deal with devices in the reserved state. Despite that it
contains code to tear down from both configured and standby state. For
the standby case this already includes the removal of the hotplug slot
so would cause a double removal if a device was ever removed in
either configured or standby state.
Instead of causing a potential double removal in a case that should
never happen explicitly WARN_ON() if a device in non-reserved state is
released and get rid of the dead code cases. |
In the Linux kernel, the following vulnerability has been resolved:
media: wl128x: Fix atomicity violation in fmc_send_cmd()
Atomicity violation occurs when the fmc_send_cmd() function is executed
simultaneously with the modification of the fmdev->resp_skb value.
Consider a scenario where, after passing the validity check within the
function, a non-null fmdev->resp_skb variable is assigned a null value.
This results in an invalid fmdev->resp_skb variable passing the validity
check. As seen in the later part of the function, skb = fmdev->resp_skb;
when the invalid fmdev->resp_skb passes the check, a null pointer
dereference error may occur at line 478, evt_hdr = (void *)skb->data;
To address this issue, it is recommended to include the validity check of
fmdev->resp_skb within the locked section of the function. This
modification ensures that the value of fmdev->resp_skb does not change
during the validation process, thereby maintaining its validity.
This possible bug is found by an experimental static analysis tool
developed by our team. This tool analyzes the locking APIs
to extract function pairs that can be concurrently executed, and then
analyzes the instructions in the paired functions to identify possible
concurrency bugs including data races and atomicity violations. |
In the Linux kernel, the following vulnerability has been resolved:
s390/cpum_sf: Fix and protect memory allocation of SDBs with mutex
Reservation of the PMU hardware is done at first event creation
and is protected by a pair of mutex_lock() and mutex_unlock().
After reservation of the PMU hardware the memory
required for the PMUs the event is to be installed on is
allocated by allocate_buffers() and alloc_sampling_buffer().
This done outside of the mutex protection.
Without mutex protection two or more concurrent invocations of
perf_event_init() may run in parallel.
This can lead to allocation of Sample Data Blocks (SDBs)
multiple times for the same PMU.
Prevent this and protect memory allocation of SDBs by
mutex. |