CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
In the Linux kernel, the following vulnerability has been resolved:
xfrm: state: fix out-of-bounds read during lookup
lookup and resize can run in parallel.
The xfrm_state_hash_generation seqlock ensures a retry, but the hash
functions can observe a hmask value that is too large for the new hlist
array.
rehash does:
rcu_assign_pointer(net->xfrm.state_bydst, ndst) [..]
net->xfrm.state_hmask = nhashmask;
While state lookup does:
h = xfrm_dst_hash(net, daddr, saddr, tmpl->reqid, encap_family);
hlist_for_each_entry_rcu(x, net->xfrm.state_bydst + h, bydst) {
This is only safe in case the update to state_bydst is larger than
net->xfrm.xfrm_state_hmask (or if the lookup function gets
serialized via state spinlock again).
Fix this by prefetching state_hmask and the associated pointers.
The xfrm_state_hash_generation seqlock retry will ensure that the pointer
and the hmask will be consistent.
The existing helpers, like xfrm_dst_hash(), are now unsafe for RCU side,
add lockdep assertions to document that they are only safe for insert
side.
xfrm_state_lookup_byaddr() uses the spinlock rather than RCU.
AFAICS this is an oversight from back when state lookup was converted to
RCU, this lock should be replaced with RCU in a future patch. |
In the Linux kernel, the following vulnerability has been resolved:
rtc: tps6594: Fix integer overflow on 32bit systems
The problem is this multiply in tps6594_rtc_set_offset()
tmp = offset * TICKS_PER_HOUR;
The "tmp" variable is an s64 but "offset" is a long in the
(-277774)-277774 range. On 32bit systems a long can hold numbers up to
approximately two billion. The number of TICKS_PER_HOUR is really large,
(32768 * 3600) or roughly a hundred million. When you start multiplying
by a hundred million it doesn't take long to overflow the two billion
mark.
Probably the safest way to fix this is to change the type of
TICKS_PER_HOUR to long long because it's such a large number. |
In the Linux kernel, the following vulnerability has been resolved:
Revert "libfs: fix infinite directory reads for offset dir"
The current directory offset allocator (based on mtree_alloc_cyclic)
stores the next offset value to return in octx->next_offset. This
mechanism typically returns values that increase monotonically over
time. Eventually, though, the newly allocated offset value wraps
back to a low number (say, 2) which is smaller than other already-
allocated offset values.
Yu Kuai <yukuai3@huawei.com> reports that, after commit 64a7ce76fb90
("libfs: fix infinite directory reads for offset dir"), if a
directory's offset allocator wraps, existing entries are no longer
visible via readdir/getdents because offset_readdir() stops listing
entries once an entry's offset is larger than octx->next_offset.
These entries vanish persistently -- they can be looked up, but will
never again appear in readdir(3) output.
The reason for this is that the commit treats directory offsets as
monotonically increasing integer values rather than opaque cookies,
and introduces this comparison:
if (dentry2offset(dentry) >= last_index) {
On 64-bit platforms, the directory offset value upper bound is
2^63 - 1. Directory offsets will monotonically increase for millions
of years without wrapping.
On 32-bit platforms, however, LONG_MAX is 2^31 - 1. The allocator
can wrap after only a few weeks (at worst).
Revert commit 64a7ce76fb90 ("libfs: fix infinite directory reads for
offset dir") to prepare for a fix that can work properly on 32-bit
systems and might apply to recent LTS kernels where shmem employs
the simple_offset mechanism. |
In the Linux kernel, the following vulnerability has been resolved:
hrtimers: Handle CPU state correctly on hotplug
Consider a scenario where a CPU transitions from CPUHP_ONLINE to halfway
through a CPU hotunplug down to CPUHP_HRTIMERS_PREPARE, and then back to
CPUHP_ONLINE:
Since hrtimers_prepare_cpu() does not run, cpu_base.hres_active remains set
to 1 throughout. However, during a CPU unplug operation, the tick and the
clockevents are shut down at CPUHP_AP_TICK_DYING. On return to the online
state, for instance CFS incorrectly assumes that the hrtick is already
active, and the chance of the clockevent device to transition to oneshot
mode is also lost forever for the CPU, unless it goes back to a lower state
than CPUHP_HRTIMERS_PREPARE once.
This round-trip reveals another issue; cpu_base.online is not set to 1
after the transition, which appears as a WARN_ON_ONCE in enqueue_hrtimer().
Aside of that, the bulk of the per CPU state is not reset either, which
means there are dangling pointers in the worst case.
Address this by adding a corresponding startup() callback, which resets the
stale per CPU state and sets the online flag.
[ tglx: Make the new callback unconditionally available, remove the online
modification in the prepare() callback and clear the remaining
state in the starting callback instead of the prepare callback ] |
In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: Initialize denominator defaults to 1
[WHAT & HOW]
Variables, used as denominators and maybe not assigned to other values,
should be initialized to non-zero to avoid DIVIDE_BY_ZERO, as reported
by Coverity.
(cherry picked from commit e2c4c6c10542ccfe4a0830bb6c9fd5b177b7bbb7) |
In the Linux kernel, the following vulnerability has been resolved:
irqchip/gic-v3-its: Don't enable interrupts in its_irq_set_vcpu_affinity()
The following call-chain leads to enabling interrupts in a nested interrupt
disabled section:
irq_set_vcpu_affinity()
irq_get_desc_lock()
raw_spin_lock_irqsave() <--- Disable interrupts
its_irq_set_vcpu_affinity()
guard(raw_spinlock_irq) <--- Enables interrupts when leaving the guard()
irq_put_desc_unlock() <--- Warns because interrupts are enabled
This was broken in commit b97e8a2f7130, which replaced the original
raw_spin_[un]lock() pair with guard(raw_spinlock_irq).
Fix the issue by using guard(raw_spinlock).
[ tglx: Massaged change log ] |
In the Linux kernel, the following vulnerability has been resolved:
virtio-blk: don't keep queue frozen during system suspend
Commit 4ce6e2db00de ("virtio-blk: Ensure no requests in virtqueues before
deleting vqs.") replaces queue quiesce with queue freeze in virtio-blk's
PM callbacks. And the motivation is to drain inflight IOs before suspending.
block layer's queue freeze looks very handy, but it is also easy to cause
deadlock, such as, any attempt to call into bio_queue_enter() may run into
deadlock if the queue is frozen in current context. There are all kinds
of ->suspend() called in suspend context, so keeping queue frozen in the
whole suspend context isn't one good idea. And Marek reported lockdep
warning[1] caused by virtio-blk's freeze queue in virtblk_freeze().
[1] https://lore.kernel.org/linux-block/ca16370e-d646-4eee-b9cc-87277c89c43c@samsung.com/
Given the motivation is to drain in-flight IOs, it can be done by calling
freeze & unfreeze, meantime restore to previous behavior by keeping queue
quiesced during suspend. |
In the Linux kernel, the following vulnerability has been resolved:
iio: adc: ti-ads1298: Add NULL check in ads1298_init
devm_kasprintf() can return a NULL pointer on failure. A check on the
return value of such a call in ads1298_init() is missing. Add it. |
In the Linux kernel, the following vulnerability has been resolved:
exfat: fix the new buffer was not zeroed before writing
Before writing, if a buffer_head marked as new, its data must
be zeroed, otherwise uninitialized data in the page cache will
be written.
So this commit uses folio_zero_new_buffers() to zero the new
buffers before ->write_end(). |
In the Linux kernel, the following vulnerability has been resolved:
riscv: Fix sleeping in invalid context in die()
die() can be called in exception handler, and therefore cannot sleep.
However, die() takes spinlock_t which can sleep with PREEMPT_RT enabled.
That causes the following warning:
BUG: sleeping function called from invalid context at kernel/locking/spinlock_rt.c:48
in_atomic(): 1, irqs_disabled(): 1, non_block: 0, pid: 285, name: mutex
preempt_count: 110001, expected: 0
RCU nest depth: 0, expected: 0
CPU: 0 UID: 0 PID: 285 Comm: mutex Not tainted 6.12.0-rc7-00022-ge19049cf7d56-dirty #234
Hardware name: riscv-virtio,qemu (DT)
Call Trace:
dump_backtrace+0x1c/0x24
show_stack+0x2c/0x38
dump_stack_lvl+0x5a/0x72
dump_stack+0x14/0x1c
__might_resched+0x130/0x13a
rt_spin_lock+0x2a/0x5c
die+0x24/0x112
do_trap_insn_illegal+0xa0/0xea
_new_vmalloc_restore_context_a0+0xcc/0xd8
Oops - illegal instruction [#1]
Switch to use raw_spinlock_t, which does not sleep even with PREEMPT_RT
enabled. |
In the Linux kernel, the following vulnerability has been resolved:
net/sctp: Prevent autoclose integer overflow in sctp_association_init()
While by default max_autoclose equals to INT_MAX / HZ, one may set
net.sctp.max_autoclose to UINT_MAX. There is code in
sctp_association_init() that can consequently trigger overflow. |
In the Linux kernel, the following vulnerability has been resolved:
fgraph: Add READ_ONCE() when accessing fgraph_array[]
In __ftrace_return_to_handler(), a loop iterates over the fgraph_array[]
elements, which are fgraph_ops. The loop checks if an element is a
fgraph_stub to prevent using a fgraph_stub afterward.
However, if the compiler reloads fgraph_array[] after this check, it might
race with an update to fgraph_array[] that introduces a fgraph_stub. This
could result in the stub being processed, but the stub contains a null
"func_hash" field, leading to a NULL pointer dereference.
To ensure that the gops compared against the fgraph_stub matches the gops
processed later, add a READ_ONCE(). A similar patch appears in commit
63a8dfb ("function_graph: Add READ_ONCE() when accessing fgraph_array[]"). |
In the Linux kernel, the following vulnerability has been resolved:
gve: guard XSK operations on the existence of queues
This patch predicates the enabling and disabling of XSK pools on the
existence of queues. As it stands, if the interface is down, disabling
or enabling XSK pools would result in a crash, as the RX queue pointer
would be NULL. XSK pool registration will occur as part of the next
interface up.
Similarly, xsk_wakeup needs be guarded against queues disappearing
while the function is executing, so a check against the
GVE_PRIV_FLAGS_NAPI_ENABLED flag is added to synchronize with the
disabling of the bit and the synchronize_net() in gve_turndown. |
In the Linux kernel, the following vulnerability has been resolved:
nfs: Fix oops in nfs_netfs_init_request() when copying to cache
When netfslib wants to copy some data that has just been read on behalf of
nfs, it creates a new write request and calls nfs_netfs_init_request() to
initialise it, but with a NULL file pointer. This causes
nfs_file_open_context() to oops - however, we don't actually need the nfs
context as we're only going to write to the cache.
Fix this by just returning if we aren't given a file pointer and emit a
warning if the request was for something other than copy-to-cache.
Further, fix nfs_netfs_free_request() so that it doesn't try to free the
context if the pointer is NULL. |
In the Linux kernel, the following vulnerability has been resolved:
ksmbd: fix a missing return value check bug
In the smb2_send_interim_resp(), if ksmbd_alloc_work_struct()
fails to allocate a node, it returns a NULL pointer to the
in_work pointer. This can lead to an illegal memory write of
in_work->response_buf when allocate_interim_rsp_buf() attempts
to perform a kzalloc() on it.
To address this issue, incorporating a check for the return
value of ksmbd_alloc_work_struct() ensures that the function
returns immediately upon allocation failure, thereby preventing
the aforementioned illegal memory access. |
In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: Add check for granularity in dml ceil/floor helpers
[Why]
Wrapper functions for dcn_bw_ceil2() and dcn_bw_floor2()
should check for granularity is non zero to avoid assert and
divide-by-zero error in dcn_bw_ functions.
[How]
Add check for granularity 0.
(cherry picked from commit f6e09701c3eb2ccb8cb0518e0b67f1c69742a4ec) |
In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: fix divide error in DM plane scale calcs
dm_get_plane_scale doesn't take into account plane scaled size equal to
zero, leading to a kernel oops due to division by zero. Fix by setting
out-scale size as zero when the dst size is zero, similar to what is
done by drm_calc_scale(). This issue started with the introduction of
cursor ovelay mode that uses this function to assess cursor mode changes
via dm_crtc_get_cursor_mode() before checking plane state.
[Dec17 17:14] Oops: divide error: 0000 [#1] PREEMPT SMP NOPTI
[ +0.000018] CPU: 5 PID: 1660 Comm: surface-DP-1 Not tainted 6.10.0+ #231
[ +0.000007] Hardware name: Valve Jupiter/Jupiter, BIOS F7A0131 01/30/2024
[ +0.000004] RIP: 0010:dm_get_plane_scale+0x3f/0x60 [amdgpu]
[ +0.000553] Code: 44 0f b7 41 3a 44 0f b7 49 3e 83 e0 0f 48 0f a3 c2 73 21 69 41 28 e8 03 00 00 31 d2 41 f7 f1 31 d2 89 06 69 41 2c e8 03 00 00 <41> f7 f0 89 07 e9 d7 d8 7e e9 44 89 c8 45 89 c1 41 89 c0 eb d4 66
[ +0.000005] RSP: 0018:ffffa8df0de6b8a0 EFLAGS: 00010246
[ +0.000006] RAX: 00000000000003e8 RBX: ffff9ac65c1f6e00 RCX: ffff9ac65d055500
[ +0.000003] RDX: 0000000000000000 RSI: ffffa8df0de6b8b0 RDI: ffffa8df0de6b8b4
[ +0.000004] RBP: ffff9ac64e7a5800 R08: 0000000000000000 R09: 0000000000000a00
[ +0.000003] R10: 00000000000000ff R11: 0000000000000054 R12: ffff9ac6d0700010
[ +0.000003] R13: ffff9ac65d054f00 R14: ffff9ac65d055500 R15: ffff9ac64e7a60a0
[ +0.000004] FS: 00007f869ea00640(0000) GS:ffff9ac970080000(0000) knlGS:0000000000000000
[ +0.000004] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ +0.000003] CR2: 000055ca701becd0 CR3: 000000010e7f2000 CR4: 0000000000350ef0
[ +0.000004] Call Trace:
[ +0.000007] <TASK>
[ +0.000006] ? __die_body.cold+0x19/0x27
[ +0.000009] ? die+0x2e/0x50
[ +0.000007] ? do_trap+0xca/0x110
[ +0.000007] ? do_error_trap+0x6a/0x90
[ +0.000006] ? dm_get_plane_scale+0x3f/0x60 [amdgpu]
[ +0.000504] ? exc_divide_error+0x38/0x50
[ +0.000005] ? dm_get_plane_scale+0x3f/0x60 [amdgpu]
[ +0.000488] ? asm_exc_divide_error+0x1a/0x20
[ +0.000011] ? dm_get_plane_scale+0x3f/0x60 [amdgpu]
[ +0.000593] dm_crtc_get_cursor_mode+0x33f/0x430 [amdgpu]
[ +0.000562] amdgpu_dm_atomic_check+0x2ef/0x1770 [amdgpu]
[ +0.000501] drm_atomic_check_only+0x5e1/0xa30 [drm]
[ +0.000047] drm_mode_atomic_ioctl+0x832/0xcb0 [drm]
[ +0.000050] ? __pfx_drm_mode_atomic_ioctl+0x10/0x10 [drm]
[ +0.000047] drm_ioctl_kernel+0xb3/0x100 [drm]
[ +0.000062] drm_ioctl+0x27a/0x4f0 [drm]
[ +0.000049] ? __pfx_drm_mode_atomic_ioctl+0x10/0x10 [drm]
[ +0.000055] amdgpu_drm_ioctl+0x4e/0x90 [amdgpu]
[ +0.000360] __x64_sys_ioctl+0x97/0xd0
[ +0.000010] do_syscall_64+0x82/0x190
[ +0.000008] ? __pfx_drm_mode_createblob_ioctl+0x10/0x10 [drm]
[ +0.000044] ? srso_return_thunk+0x5/0x5f
[ +0.000006] ? drm_ioctl_kernel+0xb3/0x100 [drm]
[ +0.000040] ? srso_return_thunk+0x5/0x5f
[ +0.000005] ? __check_object_size+0x50/0x220
[ +0.000007] ? srso_return_thunk+0x5/0x5f
[ +0.000005] ? srso_return_thunk+0x5/0x5f
[ +0.000005] ? drm_ioctl+0x2a4/0x4f0 [drm]
[ +0.000039] ? __pfx_drm_mode_createblob_ioctl+0x10/0x10 [drm]
[ +0.000043] ? srso_return_thunk+0x5/0x5f
[ +0.000005] ? srso_return_thunk+0x5/0x5f
[ +0.000005] ? __pm_runtime_suspend+0x69/0xc0
[ +0.000006] ? srso_return_thunk+0x5/0x5f
[ +0.000005] ? amdgpu_drm_ioctl+0x71/0x90 [amdgpu]
[ +0.000366] ? srso_return_thunk+0x5/0x5f
[ +0.000006] ? syscall_exit_to_user_mode+0x77/0x210
[ +0.000007] ? srso_return_thunk+0x5/0x5f
[ +0.000005] ? do_syscall_64+0x8e/0x190
[ +0.000006] ? srso_return_thunk+0x5/0x5f
[ +0.000006] ? do_syscall_64+0x8e/0x190
[ +0.000006] ? srso_return_thunk+0x5/0x5f
[ +0.000007] entry_SYSCALL_64_after_hwframe+0x76/0x7e
[ +0.000008] RIP: 0033:0x55bb7cd962bc
[ +0.000007] Code: 4c 89 6c 24 18 4c 89 64 24 20 4c 89 74 24 28 0f 57 c0 0f 11 44 24 30 89 c7 48 8d 54 24 08 b8 10 00 00 00 be bc 64
---truncated--- |
In the Linux kernel, the following vulnerability has been resolved:
misc: microchip: pci1xxxx: Resolve kernel panic during GPIO IRQ handling
Resolve kernel panic caused by improper handling of IRQs while
accessing GPIO values. This is done by replacing generic_handle_irq with
handle_nested_irq. |
In the Linux kernel, the following vulnerability has been resolved:
usb: typec: tcpci: fix NULL pointer issue on shared irq case
The tcpci_irq() may meet below NULL pointer dereference issue:
[ 2.641851] Unable to handle kernel NULL pointer dereference at virtual address 0000000000000010
[ 2.641951] status 0x1, 0x37f
[ 2.650659] Mem abort info:
[ 2.656490] ESR = 0x0000000096000004
[ 2.660230] EC = 0x25: DABT (current EL), IL = 32 bits
[ 2.665532] SET = 0, FnV = 0
[ 2.668579] EA = 0, S1PTW = 0
[ 2.671715] FSC = 0x04: level 0 translation fault
[ 2.676584] Data abort info:
[ 2.679459] ISV = 0, ISS = 0x00000004, ISS2 = 0x00000000
[ 2.684936] CM = 0, WnR = 0, TnD = 0, TagAccess = 0
[ 2.689980] GCS = 0, Overlay = 0, DirtyBit = 0, Xs = 0
[ 2.695284] [0000000000000010] user address but active_mm is swapper
[ 2.701632] Internal error: Oops: 0000000096000004 [#1] PREEMPT SMP
[ 2.707883] Modules linked in:
[ 2.710936] CPU: 1 UID: 0 PID: 87 Comm: irq/111-2-0051 Not tainted 6.12.0-rc6-06316-g7f63786ad3d1-dirty #4
[ 2.720570] Hardware name: NXP i.MX93 11X11 EVK board (DT)
[ 2.726040] pstate: 60400009 (nZCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
[ 2.732989] pc : tcpci_irq+0x38/0x318
[ 2.736647] lr : _tcpci_irq+0x14/0x20
[ 2.740295] sp : ffff80008324bd30
[ 2.743597] x29: ffff80008324bd70 x28: ffff800080107894 x27: ffff800082198f70
[ 2.750721] x26: ffff0000050e6680 x25: ffff000004d172ac x24: ffff0000050f0000
[ 2.757845] x23: ffff000004d17200 x22: 0000000000000001 x21: ffff0000050f0000
[ 2.764969] x20: ffff000004d17200 x19: 0000000000000000 x18: 0000000000000001
[ 2.772093] x17: 0000000000000000 x16: ffff80008183d8a0 x15: ffff00007fbab040
[ 2.779217] x14: ffff00007fb918c0 x13: 0000000000000000 x12: 000000000000017a
[ 2.786341] x11: 0000000000000001 x10: 0000000000000a90 x9 : ffff80008324bd00
[ 2.793465] x8 : ffff0000050f0af0 x7 : ffff00007fbaa840 x6 : 0000000000000031
[ 2.800589] x5 : 000000000000017a x4 : 0000000000000002 x3 : 0000000000000002
[ 2.807713] x2 : ffff80008324bd3a x1 : 0000000000000010 x0 : 0000000000000000
[ 2.814838] Call trace:
[ 2.817273] tcpci_irq+0x38/0x318
[ 2.820583] _tcpci_irq+0x14/0x20
[ 2.823885] irq_thread_fn+0x2c/0xa8
[ 2.827456] irq_thread+0x16c/0x2f4
[ 2.830940] kthread+0x110/0x114
[ 2.834164] ret_from_fork+0x10/0x20
[ 2.837738] Code: f9426420 f9001fe0 d2800000 52800201 (f9400a60)
This may happen on shared irq case. Such as two Type-C ports share one
irq. After the first port finished tcpci_register_port(), it may trigger
interrupt. However, if the interrupt comes by chance the 2nd port finishes
devm_request_threaded_irq(), the 2nd port interrupt handler will run at
first. Then the above issue happens due to tcpci is still a NULL pointer
in tcpci_irq() when dereference to regmap.
devm_request_threaded_irq()
<-- port1 irq comes
disable_irq(client->irq);
tcpci_register_port()
This will restore the logic to the state before commit (77e85107a771 "usb:
typec: tcpci: support edge irq").
However, moving tcpci_register_port() earlier creates a problem when use
edge irq because tcpci_init() will be called before
devm_request_threaded_irq(). The tcpci_init() writes the ALERT_MASK to
the hardware to tell it to start generating interrupts but we're not ready
to deal with them yet, then the ALERT events may be missed and ALERT line
will not recover to high level forever. To avoid the issue, this will also
set ALERT_MASK register after devm_request_threaded_irq() return. |
In the Linux kernel, the following vulnerability has been resolved:
usb: gadget: f_fs: Remove WARN_ON in functionfs_bind
This commit addresses an issue related to below kernel panic where
panic_on_warn is enabled. It is caused by the unnecessary use of WARN_ON
in functionsfs_bind, which easily leads to the following scenarios.
1.adb_write in adbd 2. UDC write via configfs
================= =====================
->usb_ffs_open_thread() ->UDC write
->open_functionfs() ->configfs_write_iter()
->adb_open() ->gadget_dev_desc_UDC_store()
->adb_write() ->usb_gadget_register_driver_owner
->driver_register()
->StartMonitor() ->bus_add_driver()
->adb_read() ->gadget_bind_driver()
<times-out without BIND event> ->configfs_composite_bind()
->usb_add_function()
->open_functionfs() ->ffs_func_bind()
->adb_open() ->functionfs_bind()
<ffs->state !=FFS_ACTIVE>
The adb_open, adb_read, and adb_write operations are invoked from the
daemon, but trying to bind the function is a process that is invoked by
UDC write through configfs, which opens up the possibility of a race
condition between the two paths. In this race scenario, the kernel panic
occurs due to the WARN_ON from functionfs_bind when panic_on_warn is
enabled. This commit fixes the kernel panic by removing the unnecessary
WARN_ON.
Kernel panic - not syncing: kernel: panic_on_warn set ...
[ 14.542395] Call trace:
[ 14.542464] ffs_func_bind+0x1c8/0x14a8
[ 14.542468] usb_add_function+0xcc/0x1f0
[ 14.542473] configfs_composite_bind+0x468/0x588
[ 14.542478] gadget_bind_driver+0x108/0x27c
[ 14.542483] really_probe+0x190/0x374
[ 14.542488] __driver_probe_device+0xa0/0x12c
[ 14.542492] driver_probe_device+0x3c/0x220
[ 14.542498] __driver_attach+0x11c/0x1fc
[ 14.542502] bus_for_each_dev+0x104/0x160
[ 14.542506] driver_attach+0x24/0x34
[ 14.542510] bus_add_driver+0x154/0x270
[ 14.542514] driver_register+0x68/0x104
[ 14.542518] usb_gadget_register_driver_owner+0x48/0xf4
[ 14.542523] gadget_dev_desc_UDC_store+0xf8/0x144
[ 14.542526] configfs_write_iter+0xf0/0x138 |