CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
The Tiny Bootstrap Elements Light plugin for WordPress is vulnerable to Local File Inclusion in all versions up to, and including, 4.3.34 via the 'language' parameter. This makes it possible for unauthenticated attackers to include and execute arbitrary .php files on the server, allowing the execution of any PHP code in those files. This can be used to bypass access controls, obtain sensitive data, or achieve code execution in cases where .php file types can be uploaded and included. |
The Schema & Structured Data for WP & AMP WordPress plugin before 1.50 does not properly handles HTML tag attribute modifications, making it possible for unauthenticated attackers to conduct Stored XSS attacks via post comments. |
Local privilege escalation due to DLL hijacking vulnerability. The following products are affected: Acronis True Image (Windows) before build 42386. |
In the Linux kernel, the following vulnerability has been resolved:
i40e: remove read access to debugfs files
The 'command' and 'netdev_ops' debugfs files are a legacy debugging
interface supported by the i40e driver since its early days by commit
02e9c290814c ("i40e: debugfs interface").
Both of these debugfs files provide a read handler which is mostly useless,
and which is implemented with questionable logic. They both use a static
256 byte buffer which is initialized to the empty string. In the case of
the 'command' file this buffer is literally never used and simply wastes
space. In the case of the 'netdev_ops' file, the last command written is
saved here.
On read, the files contents are presented as the name of the device
followed by a colon and then the contents of their respective static
buffer. For 'command' this will always be "<device>: ". For 'netdev_ops',
this will be "<device>: <last command written>". But note the buffer is
shared between all devices operated by this module. At best, it is mostly
meaningless information, and at worse it could be accessed simultaneously
as there doesn't appear to be any locking mechanism.
We have also recently received multiple reports for both read functions
about their use of snprintf and potential overflow that could result in
reading arbitrary kernel memory. For the 'command' file, this is definitely
impossible, since the static buffer is always zero and never written to.
For the 'netdev_ops' file, it does appear to be possible, if the user
carefully crafts the command input, it will be copied into the buffer,
which could be large enough to cause snprintf to truncate, which then
causes the copy_to_user to read beyond the length of the buffer allocated
by kzalloc.
A minimal fix would be to replace snprintf() with scnprintf() which would
cap the return to the number of bytes written, preventing an overflow. A
more involved fix would be to drop the mostly useless static buffers,
saving 512 bytes and modifying the read functions to stop needing those as
input.
Instead, lets just completely drop the read access to these files. These
are debug interfaces exposed as part of debugfs, and I don't believe that
dropping read access will break any script, as the provided output is
pretty useless. You can find the netdev name through other more standard
interfaces, and the 'netdev_ops' interface can easily result in garbage if
you issue simultaneous writes to multiple devices at once.
In order to properly remove the i40e_dbg_netdev_ops_buf, we need to
refactor its write function to avoid using the static buffer. Instead, use
the same logic as the i40e_dbg_command_write, with an allocated buffer.
Update the code to use this instead of the static buffer, and ensure we
free the buffer on exit. This fixes simultaneous writes to 'netdev_ops' on
multiple devices, and allows us to remove the now unused static buffer
along with removing the read access. |
In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: remove oem i2c adapter on finish
Fixes a bug where unbinding of the GPU would leave the oem i2c adapter
registered resulting in a null pointer dereference when applications try
to access the invalid device.
(cherry picked from commit 89923fb7ead4fdd37b78dd49962d9bb5892403e6) |
In the Linux kernel, the following vulnerability has been resolved:
crypto: hisilicon/hpre - fix resource leak in remove process
In hpre_remove(), when the disable operation of qm sriov failed,
the following logic should continue to be executed to release the
remaining resources that have been allocated, instead of returning
directly, otherwise there will be resource leakage. |
In the Linux kernel, the following vulnerability has been resolved:
memory: of: Fix refcount leak bug in of_lpddr3_get_ddr_timings()
We should add the of_node_put() when breaking out of
for_each_child_of_node() as it will automatically increase
and decrease the refcount. |
In the Linux kernel, the following vulnerability has been resolved:
drm/vc4: drop all currently held locks if deadlock happens
If vc4_hdmi_reset_link() returns -EDEADLK, it means that a deadlock
happened in the locking context. This situation should be addressed by
dropping all currently held locks and block until the contended lock
becomes available. Currently, vc4 is not dealing with the deadlock
properly, producing the following output when PROVE_LOCKING is enabled:
[ 825.612809] ------------[ cut here ]------------
[ 825.612852] WARNING: CPU: 1 PID: 116 at drivers/gpu/drm/drm_modeset_lock.c:276 drm_modeset_drop_locks+0x60/0x68 [drm]
[ 825.613458] Modules linked in: 8021q mrp garp stp llc
raspberrypi_cpufreq brcmfmac brcmutil crct10dif_ce hci_uart cfg80211
btqca btbcm bluetooth vc4 raspberrypi_hwmon snd_soc_hdmi_codec cec
clk_raspberrypi ecdh_generic drm_display_helper ecc rfkill
drm_dma_helper drm_kms_helper pwm_bcm2835 bcm2835_thermal bcm2835_rng
rng_core i2c_bcm2835 drm fuse ip_tables x_tables ipv6
[ 825.613735] CPU: 1 PID: 116 Comm: kworker/1:2 Tainted: G W 6.1.0-rc6-01399-g941aae326315 #3
[ 825.613759] Hardware name: Raspberry Pi 3 Model B Rev 1.2 (DT)
[ 825.613777] Workqueue: events output_poll_execute [drm_kms_helper]
[ 825.614038] pstate: 60000005 (nZCv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--)
[ 825.614063] pc : drm_modeset_drop_locks+0x60/0x68 [drm]
[ 825.614603] lr : drm_helper_probe_detect+0x120/0x1b4 [drm_kms_helper]
[ 825.614829] sp : ffff800008313bf0
[ 825.614844] x29: ffff800008313bf0 x28: ffffcd7778b8b000 x27: 0000000000000000
[ 825.614883] x26: 0000000000000001 x25: 0000000000000001 x24: ffff677cc35c2758
[ 825.614920] x23: ffffcd7707d01430 x22: ffffcd7707c3edc7 x21: 0000000000000001
[ 825.614958] x20: 0000000000000000 x19: ffff800008313c10 x18: 000000000000b6d3
[ 825.614995] x17: ffffcd777835e214 x16: ffffcd7777cef870 x15: fffff81000000000
[ 825.615033] x14: 0000000000000000 x13: 0000000000000099 x12: 0000000000000002
[ 825.615070] x11: 72917988020af800 x10: 72917988020af800 x9 : 72917988020af800
[ 825.615108] x8 : ffff677cc665e0a8 x7 : d00a8c180000110c x6 : ffffcd77774c0054
[ 825.615145] x5 : 0000000000000000 x4 : 0000000000000001 x3 : 0000000000000000
[ 825.615181] x2 : ffff677cc55e1880 x1 : ffffcd7777cef8ec x0 : ffff800008313c10
[ 825.615219] Call trace:
[ 825.615232] drm_modeset_drop_locks+0x60/0x68 [drm]
[ 825.615773] drm_helper_probe_detect+0x120/0x1b4 [drm_kms_helper]
[ 825.616003] output_poll_execute+0xe4/0x224 [drm_kms_helper]
[ 825.616233] process_one_work+0x2b4/0x618
[ 825.616264] worker_thread+0x24c/0x464
[ 825.616288] kthread+0xec/0x110
[ 825.616310] ret_from_fork+0x10/0x20
[ 825.616335] irq event stamp: 7634
[ 825.616349] hardirqs last enabled at (7633): [<ffffcd777831ee90>] _raw_spin_unlock_irq+0x3c/0x78
[ 825.616384] hardirqs last disabled at (7634): [<ffffcd7778315a78>] __schedule+0x134/0x9f0
[ 825.616411] softirqs last enabled at (7630): [<ffffcd7707aacea0>] local_bh_enable+0x4/0x30 [ipv6]
[ 825.617019] softirqs last disabled at (7618): [<ffffcd7707aace70>] local_bh_disable+0x4/0x30 [ipv6]
[ 825.617586] ---[ end trace 0000000000000000 ]---
Therefore, deal with the deadlock as suggested by [1], using the
function drm_modeset_backoff().
[1] https://docs.kernel.org/gpu/drm-kms.html?highlight=kms#kms-locking |
In the Linux kernel, the following vulnerability has been resolved:
powerpc/52xx: Fix a resource leak in an error handling path
The error handling path of mpc52xx_lpbfifo_probe() has a request_irq()
that is not balanced by a corresponding free_irq().
Add the missing call, as already done in the remove function. |
In the Linux kernel, the following vulnerability has been resolved:
af_unix: Fix null-ptr-deref in unix_stream_sendpage().
Bing-Jhong Billy Jheng reported null-ptr-deref in unix_stream_sendpage()
with detailed analysis and a nice repro.
unix_stream_sendpage() tries to add data to the last skb in the peer's
recv queue without locking the queue.
If the peer's FD is passed to another socket and the socket's FD is
passed to the peer, there is a loop between them. If we close both
sockets without receiving FD, the sockets will be cleaned up by garbage
collection.
The garbage collection iterates such sockets and unlinks skb with
FD from the socket's receive queue under the queue's lock.
So, there is a race where unix_stream_sendpage() could access an skb
locklessly that is being released by garbage collection, resulting in
use-after-free.
To avoid the issue, unix_stream_sendpage() must lock the peer's recv
queue.
Note the issue does not exist in 6.5+ thanks to the recent sendpage()
refactoring.
This patch is originally written by Linus Torvalds.
BUG: unable to handle page fault for address: ffff988004dd6870
PF: supervisor read access in kernel mode
PF: error_code(0x0000) - not-present page
PGD 0 P4D 0
PREEMPT SMP PTI
CPU: 4 PID: 297 Comm: garbage_uaf Not tainted 6.1.46 #1
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.0-0-gd239552ce722-prebuilt.qemu.org 04/01/2014
RIP: 0010:kmem_cache_alloc_node+0xa2/0x1e0
Code: c0 0f 84 32 01 00 00 41 83 fd ff 74 10 48 8b 00 48 c1 e8 3a 41 39 c5 0f 85 1c 01 00 00 41 8b 44 24 28 49 8b 3c 24 48 8d 4a 40 <49> 8b 1c 06 4c 89 f0 65 48 0f c7 0f 0f 94 c0 84 c0 74 a1 41 8b 44
RSP: 0018:ffffc9000079fac0 EFLAGS: 00000246
RAX: 0000000000000070 RBX: 0000000000000005 RCX: 000000000001a284
RDX: 000000000001a244 RSI: 0000000000400cc0 RDI: 000000000002eee0
RBP: 0000000000400cc0 R08: 0000000000400cc0 R09: 0000000000000003
R10: 0000000000000001 R11: 0000000000000000 R12: ffff888003970f00
R13: 00000000ffffffff R14: ffff988004dd6800 R15: 00000000000000e8
FS: 00007f174d6f3600(0000) GS:ffff88807db00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: ffff988004dd6870 CR3: 00000000092be000 CR4: 00000000007506e0
PKRU: 55555554
Call Trace:
<TASK>
? __die_body.cold+0x1a/0x1f
? page_fault_oops+0xa9/0x1e0
? fixup_exception+0x1d/0x310
? exc_page_fault+0xa8/0x150
? asm_exc_page_fault+0x22/0x30
? kmem_cache_alloc_node+0xa2/0x1e0
? __alloc_skb+0x16c/0x1e0
__alloc_skb+0x16c/0x1e0
alloc_skb_with_frags+0x48/0x1e0
sock_alloc_send_pskb+0x234/0x270
unix_stream_sendmsg+0x1f5/0x690
sock_sendmsg+0x5d/0x60
____sys_sendmsg+0x210/0x260
___sys_sendmsg+0x83/0xd0
? kmem_cache_alloc+0xc6/0x1c0
? avc_disable+0x20/0x20
? percpu_counter_add_batch+0x53/0xc0
? alloc_empty_file+0x5d/0xb0
? alloc_file+0x91/0x170
? alloc_file_pseudo+0x94/0x100
? __fget_light+0x9f/0x120
__sys_sendmsg+0x54/0xa0
do_syscall_64+0x3b/0x90
entry_SYSCALL_64_after_hwframe+0x69/0xd3
RIP: 0033:0x7f174d639a7d
Code: 28 89 54 24 1c 48 89 74 24 10 89 7c 24 08 e8 8a c1 f4 ff 8b 54 24 1c 48 8b 74 24 10 41 89 c0 8b 7c 24 08 b8 2e 00 00 00 0f 05 <48> 3d 00 f0 ff ff 77 33 44 89 c7 48 89 44 24 08 e8 de c1 f4 ff 48
RSP: 002b:00007ffcb563ea50 EFLAGS: 00000293 ORIG_RAX: 000000000000002e
RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007f174d639a7d
RDX: 0000000000000000 RSI: 00007ffcb563eab0 RDI: 0000000000000007
RBP: 00007ffcb563eb10 R08: 0000000000000000 R09: 00000000ffffffff
R10: 00000000004040a0 R11: 0000000000000293 R12: 00007ffcb563ec28
R13: 0000000000401398 R14: 0000000000403e00 R15: 00007f174d72c000
</TASK> |
In the Linux kernel, the following vulnerability has been resolved:
ALSA: ac97: fix possible memory leak in snd_ac97_dev_register()
If device_register() fails in snd_ac97_dev_register(), it should
call put_device() to give up reference, or the name allocated in
dev_set_name() is leaked. |
In the Linux kernel, the following vulnerability has been resolved:
fs/ntfs3: Validate buffer length while parsing index
indx_read is called when we have some NTFS directory operations that
need more information from the index buffers. This adds a sanity check
to make sure the returned index buffer length is legit, or we may have
some out-of-bound memory accesses.
[ 560.897595] BUG: KASAN: slab-out-of-bounds in hdr_find_e.isra.0+0x10c/0x320
[ 560.898321] Read of size 2 at addr ffff888009497238 by task exp/245
[ 560.898760]
[ 560.899129] CPU: 0 PID: 245 Comm: exp Not tainted 6.0.0-rc6 #37
[ 560.899505] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qemu.org 04/01/2014
[ 560.900170] Call Trace:
[ 560.900407] <TASK>
[ 560.900732] dump_stack_lvl+0x49/0x63
[ 560.901108] print_report.cold+0xf5/0x689
[ 560.901395] ? hdr_find_e.isra.0+0x10c/0x320
[ 560.901716] kasan_report+0xa7/0x130
[ 560.901950] ? hdr_find_e.isra.0+0x10c/0x320
[ 560.902208] __asan_load2+0x68/0x90
[ 560.902427] hdr_find_e.isra.0+0x10c/0x320
[ 560.902846] ? cmp_uints+0xe0/0xe0
[ 560.903363] ? cmp_sdh+0x90/0x90
[ 560.903883] ? ntfs_bread_run+0x190/0x190
[ 560.904196] ? rwsem_down_read_slowpath+0x750/0x750
[ 560.904969] ? ntfs_fix_post_read+0xe0/0x130
[ 560.905259] ? __kasan_check_write+0x14/0x20
[ 560.905599] ? up_read+0x1a/0x90
[ 560.905853] ? indx_read+0x22c/0x380
[ 560.906096] indx_find+0x2ef/0x470
[ 560.906352] ? indx_find_buffer+0x2d0/0x2d0
[ 560.906692] ? __kasan_kmalloc+0x88/0xb0
[ 560.906977] dir_search_u+0x196/0x2f0
[ 560.907220] ? ntfs_nls_to_utf16+0x450/0x450
[ 560.907464] ? __kasan_check_write+0x14/0x20
[ 560.907747] ? mutex_lock+0x8f/0xe0
[ 560.907970] ? __mutex_lock_slowpath+0x20/0x20
[ 560.908214] ? kmem_cache_alloc+0x143/0x4b0
[ 560.908459] ntfs_lookup+0xe0/0x100
[ 560.908788] __lookup_slow+0x116/0x220
[ 560.909050] ? lookup_fast+0x1b0/0x1b0
[ 560.909309] ? lookup_fast+0x13f/0x1b0
[ 560.909601] walk_component+0x187/0x230
[ 560.909944] link_path_walk.part.0+0x3f0/0x660
[ 560.910285] ? handle_lookup_down+0x90/0x90
[ 560.910618] ? path_init+0x642/0x6e0
[ 560.911084] ? percpu_counter_add_batch+0x6e/0xf0
[ 560.912559] ? __alloc_file+0x114/0x170
[ 560.913008] path_openat+0x19c/0x1d10
[ 560.913419] ? getname_flags+0x73/0x2b0
[ 560.913815] ? kasan_save_stack+0x3a/0x50
[ 560.914125] ? kasan_save_stack+0x26/0x50
[ 560.914542] ? __kasan_slab_alloc+0x6d/0x90
[ 560.914924] ? kmem_cache_alloc+0x143/0x4b0
[ 560.915339] ? getname_flags+0x73/0x2b0
[ 560.915647] ? getname+0x12/0x20
[ 560.916114] ? __x64_sys_open+0x4c/0x60
[ 560.916460] ? path_lookupat.isra.0+0x230/0x230
[ 560.916867] ? __isolate_free_page+0x2e0/0x2e0
[ 560.917194] do_filp_open+0x15c/0x1f0
[ 560.917448] ? may_open_dev+0x60/0x60
[ 560.917696] ? expand_files+0xa4/0x3a0
[ 560.917923] ? __kasan_check_write+0x14/0x20
[ 560.918185] ? _raw_spin_lock+0x88/0xdb
[ 560.918409] ? _raw_spin_lock_irqsave+0x100/0x100
[ 560.918783] ? _find_next_bit+0x4a/0x130
[ 560.919026] ? _raw_spin_unlock+0x19/0x40
[ 560.919276] ? alloc_fd+0x14b/0x2d0
[ 560.919635] do_sys_openat2+0x32a/0x4b0
[ 560.920035] ? file_open_root+0x230/0x230
[ 560.920336] ? __rcu_read_unlock+0x5b/0x280
[ 560.920813] do_sys_open+0x99/0xf0
[ 560.921208] ? filp_open+0x60/0x60
[ 560.921482] ? exit_to_user_mode_prepare+0x49/0x180
[ 560.921867] __x64_sys_open+0x4c/0x60
[ 560.922128] do_syscall_64+0x3b/0x90
[ 560.922369] entry_SYSCALL_64_after_hwframe+0x63/0xcd
[ 560.923030] RIP: 0033:0x7f7dff2e4469
[ 560.923681] Code: 00 f3 c3 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 40 00 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 088
[ 560.924451] RSP: 002b:00007ffd41a210b8 EFLAGS: 00000206 ORIG_RAX: 0000000000000002
[ 560.925168] RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007f7dff2e4469
[ 560.925655] RDX: 0000000000000000 RSI: 0000000000000002 RDI:
---truncated--- |
In the Linux kernel, the following vulnerability has been resolved:
clk: tegra20: Fix refcount leak in tegra20_clock_init
of_find_matching_node() returns a node pointer with refcount
incremented, we should use of_node_put() on it when not need anymore.
Add missing of_node_put() to avoid refcount leak. |
In the Linux kernel, the following vulnerability has been resolved:
FS: JFS: Fix null-ptr-deref Read in txBegin
Syzkaller reported an issue where txBegin may be called
on a superblock in a read-only mounted filesystem which leads
to NULL pointer deref. This could be solved by checking if
the filesystem is read-only before calling txBegin, and returning
with appropiate error code. |
In the Linux kernel, the following vulnerability has been resolved:
mt76: mt7915: Fix PCI device refcount leak in mt7915_pci_init_hif2()
As comment of pci_get_device() says, it returns a pci_device with its
refcount increased. We need to call pci_dev_put() to decrease the
refcount. Save the return value of pci_get_device() and call
pci_dev_put() to decrease the refcount. |
In the Linux kernel, the following vulnerability has been resolved:
scsi: lpfc: Fix null ndlp ptr dereference in abnormal exit path for GFT_ID
An error case exit from lpfc_cmpl_ct_cmd_gft_id() results in a call to
lpfc_nlp_put() with a null pointer to a nodelist structure.
Changed lpfc_cmpl_ct_cmd_gft_id() to initialize nodelist pointer upon
entry. |
In the Linux kernel, the following vulnerability has been resolved:
iommu: Fix error unwind in iommu_group_alloc()
If either iommu_group_grate_file() fails then the
iommu_group is leaked.
Destroy it on these error paths.
Found by kselftest/iommu/iommufd_fail_nth |
In the Linux kernel, the following vulnerability has been resolved:
ACPI: processor: Check for null return of devm_kzalloc() in fch_misc_setup()
devm_kzalloc() may fail, clk_data->name might be NULL and will
cause a NULL pointer dereference later.
[ rjw: Subject and changelog edits ] |
A vulnerability exists in Asset Suite for an authenticated user to manipulate the content of performance related log data or to inject crafted data in logfile for potentially carrying out further malicious attacks. Performance logging is typically enabled for troubleshooting purposes while resolving application performance related issues. |
NVIDIA Delegated Licensing Service for all appliance platforms contains a vulnerability where an User/Attacker may cause an authorized action. A successful exploit of this vulnerability may lead to information disclosure. |