Search

Search Results (324634 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2024-39037 2025-12-29 6.5 Medium
MyNET up to v26.08.316 was discovered to contain an Unauthenticated SQL Injection vulnerability via the intmenu parameter.
CVE-2024-40317 2025-12-29 6.1 Medium
A reflected cross-site scripting (XSS) vulnerability in MyNET up to v26.08 allows attackers to execute arbitrary code in the context of a user's browser via injecting a crafted payload into the parameter HTTP.
CVE-2025-15073 2025-12-29 7.3 High
A vulnerability was determined in itsourcecode Online Frozen Foods Ordering System 1.0. This affects an unknown part of the file /contact_us.php. This manipulation of the argument Name causes sql injection. It is possible to initiate the attack remotely. The exploit has been publicly disclosed and may be utilized.
CVE-2023-54136 1 Linux 1 Linux Kernel 2025-12-29 7.0 High
In the Linux kernel, the following vulnerability has been resolved: serial: sprd: Fix DMA buffer leak issue Release DMA buffer when _probe() returns failure to avoid memory leak.
CVE-2023-54145 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: bpf: drop unnecessary user-triggerable WARN_ONCE in verifierl log It's trivial for user to trigger "verifier log line truncated" warning, as verifier has a fixed-sized buffer of 1024 bytes (as of now), and there are at least two pieces of user-provided information that can be output through this buffer, and both can be arbitrarily sized by user: - BTF names; - BTF.ext source code lines strings. Verifier log buffer should be properly sized for typical verifier state output. But it's sort-of expected that this buffer won't be long enough in some circumstances. So let's drop the check. In any case code will work correctly, at worst truncating a part of a single line output.
CVE-2023-54147 1 Linux 1 Linux Kernel 2025-12-29 N/A
In the Linux kernel, the following vulnerability has been resolved: media: platform: mtk-mdp3: Add missing check and free for ida_alloc Add the check for the return value of the ida_alloc in order to avoid NULL pointer dereference. Moreover, free allocated "ctx->id" if mdp_m2m_open fails later in order to avoid memory leak.
CVE-2023-54148 1 Linux 1 Linux Kernel 2025-12-29 7.0 High
In the Linux kernel, the following vulnerability has been resolved: net/mlx5e: Move representor neigh cleanup to profile cleanup_tx For IP tunnel encapsulation in ECMP (Equal-Cost Multipath) mode, as the flow is duplicated to the peer eswitch, the related neighbour information on the peer uplink representor is created as well. In the cited commit, eswitch devcom unpair is moved to uplink unload API, specifically the profile->cleanup_tx. If there is a encap rule offloaded in ECMP mode, when one eswitch does unpair (because of unloading the driver, for instance), and the peer rule from the peer eswitch is going to be deleted, the use-after-free error is triggered while accessing neigh info, as it is already cleaned up in uplink's profile->disable, which is before its profile->cleanup_tx. To fix this issue, move the neigh cleanup to profile's cleanup_tx callback, and after mlx5e_cleanup_uplink_rep_tx is called. The neigh init is moved to init_tx for symmeter. [ 2453.376299] BUG: KASAN: slab-use-after-free in mlx5e_rep_neigh_entry_release+0x109/0x3a0 [mlx5_core] [ 2453.379125] Read of size 4 at addr ffff888127af9008 by task modprobe/2496 [ 2453.381542] CPU: 7 PID: 2496 Comm: modprobe Tainted: G B 6.4.0-rc7+ #15 [ 2453.383386] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 [ 2453.384335] Call Trace: [ 2453.384625] <TASK> [ 2453.384891] dump_stack_lvl+0x33/0x50 [ 2453.385285] print_report+0xc2/0x610 [ 2453.385667] ? __virt_addr_valid+0xb1/0x130 [ 2453.386091] ? mlx5e_rep_neigh_entry_release+0x109/0x3a0 [mlx5_core] [ 2453.386757] kasan_report+0xae/0xe0 [ 2453.387123] ? mlx5e_rep_neigh_entry_release+0x109/0x3a0 [mlx5_core] [ 2453.387798] mlx5e_rep_neigh_entry_release+0x109/0x3a0 [mlx5_core] [ 2453.388465] mlx5e_rep_encap_entry_detach+0xa6/0xe0 [mlx5_core] [ 2453.389111] mlx5e_encap_dealloc+0xa7/0x100 [mlx5_core] [ 2453.389706] mlx5e_tc_tun_encap_dests_unset+0x61/0xb0 [mlx5_core] [ 2453.390361] mlx5_free_flow_attr_actions+0x11e/0x340 [mlx5_core] [ 2453.391015] ? complete_all+0x43/0xd0 [ 2453.391398] ? free_flow_post_acts+0x38/0x120 [mlx5_core] [ 2453.392004] mlx5e_tc_del_fdb_flow+0x4ae/0x690 [mlx5_core] [ 2453.392618] mlx5e_tc_del_fdb_peers_flow+0x308/0x370 [mlx5_core] [ 2453.393276] mlx5e_tc_clean_fdb_peer_flows+0xf5/0x140 [mlx5_core] [ 2453.393925] mlx5_esw_offloads_unpair+0x86/0x540 [mlx5_core] [ 2453.394546] ? mlx5_esw_offloads_set_ns_peer.isra.0+0x180/0x180 [mlx5_core] [ 2453.395268] ? down_write+0xaa/0x100 [ 2453.395652] mlx5_esw_offloads_devcom_event+0x203/0x530 [mlx5_core] [ 2453.396317] mlx5_devcom_send_event+0xbb/0x190 [mlx5_core] [ 2453.396917] mlx5_esw_offloads_devcom_cleanup+0xb0/0xd0 [mlx5_core] [ 2453.397582] mlx5e_tc_esw_cleanup+0x42/0x120 [mlx5_core] [ 2453.398182] mlx5e_rep_tc_cleanup+0x15/0x30 [mlx5_core] [ 2453.398768] mlx5e_cleanup_rep_tx+0x6c/0x80 [mlx5_core] [ 2453.399367] mlx5e_detach_netdev+0xee/0x120 [mlx5_core] [ 2453.399957] mlx5e_netdev_change_profile+0x84/0x170 [mlx5_core] [ 2453.400598] mlx5e_vport_rep_unload+0xe0/0xf0 [mlx5_core] [ 2453.403781] mlx5_eswitch_unregister_vport_reps+0x15e/0x190 [mlx5_core] [ 2453.404479] ? mlx5_eswitch_register_vport_reps+0x200/0x200 [mlx5_core] [ 2453.405170] ? up_write+0x39/0x60 [ 2453.405529] ? kernfs_remove_by_name_ns+0xb7/0xe0 [ 2453.405985] auxiliary_bus_remove+0x2e/0x40 [ 2453.406405] device_release_driver_internal+0x243/0x2d0 [ 2453.406900] ? kobject_put+0x42/0x2d0 [ 2453.407284] bus_remove_device+0x128/0x1d0 [ 2453.407687] device_del+0x240/0x550 [ 2453.408053] ? waiting_for_supplier_show+0xe0/0xe0 [ 2453.408511] ? kobject_put+0xfa/0x2d0 [ 2453.408889] ? __kmem_cache_free+0x14d/0x280 [ 2453.409310] mlx5_rescan_drivers_locked.part.0+0xcd/0x2b0 [mlx5_core] [ 2453.409973] mlx5_unregister_device+0x40/0x50 [mlx5_core] [ 2453.410561] mlx5_uninit_one+0x3d/0x110 [mlx5_core] [ 2453.411111] remove_one+0x89/0x130 [mlx5_core] [ 24 ---truncated---
CVE-2023-54151 1 Linux 1 Linux Kernel 2025-12-29 N/A
In the Linux kernel, the following vulnerability has been resolved: f2fs: Fix system crash due to lack of free space in LFS When f2fs tries to checkpoint during foreground gc in LFS mode, system crash occurs due to lack of free space if the amount of dirty node and dentry pages generated by data migration exceeds free space. The reproduction sequence is as follows. - 20GiB capacity block device (null_blk) - format and mount with LFS mode - create a file and write 20,000MiB - 4k random write on full range of the file RIP: 0010:new_curseg+0x48a/0x510 [f2fs] Code: 55 e7 f5 89 c0 48 0f af c3 48 8b 5d c0 48 c1 e8 20 83 c0 01 89 43 6c 48 83 c4 28 5b 41 5c 41 5d 41 5e 41 5f 5d c3 cc cc cc cc <0f> 0b f0 41 80 4f 48 04 45 85 f6 0f 84 ba fd ff ff e9 ef fe ff ff RSP: 0018:ffff977bc397b218 EFLAGS: 00010246 RAX: 00000000000027b9 RBX: 0000000000000000 RCX: 00000000000027c0 RDX: 0000000000000000 RSI: 00000000000027b9 RDI: ffff8c25ab4e74f8 RBP: ffff977bc397b268 R08: 00000000000027b9 R09: ffff8c29e4a34b40 R10: 0000000000000001 R11: ffff977bc397b0d8 R12: 0000000000000000 R13: ffff8c25b4dd81a0 R14: 0000000000000000 R15: ffff8c2f667f9000 FS: 0000000000000000(0000) GS:ffff8c344ec80000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 000000c00055d000 CR3: 0000000e30810003 CR4: 00000000003706e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: <TASK> allocate_segment_by_default+0x9c/0x110 [f2fs] f2fs_allocate_data_block+0x243/0xa30 [f2fs] ? __mod_lruvec_page_state+0xa0/0x150 do_write_page+0x80/0x160 [f2fs] f2fs_do_write_node_page+0x32/0x50 [f2fs] __write_node_page+0x339/0x730 [f2fs] f2fs_sync_node_pages+0x5a6/0x780 [f2fs] block_operations+0x257/0x340 [f2fs] f2fs_write_checkpoint+0x102/0x1050 [f2fs] f2fs_gc+0x27c/0x630 [f2fs] ? folio_mark_dirty+0x36/0x70 f2fs_balance_fs+0x16f/0x180 [f2fs] This patch adds checking whether free sections are enough before checkpoint during gc. [Jaegeuk Kim: code clean-up]
CVE-2025-2515 2025-12-29 7.2 High
A vulnerability was found in BlueChi, a multi-node systemd service controller used in RHIVOS. This flaw allows a user with root privileges on a managed node (qm) to create or override systemd service unit files that affect the host node. This issue can lead to privilege escalation, unauthorized service execution, and potential system compromise.
CVE-2025-3232 2025-12-29 7.5 High
A remote unauthenticated attacker may be able to bypass authentication by utilizing a specific API route to execute arbitrary OS commands.
CVE-2025-36154 1 Ibm 1 Concert 2025-12-29 6.2 Medium
IBM Concert 1.0.0 through 2.1.0 stores sensitive information in cleartext during recursive docker builds which could be obtained by a local user.
CVE-2025-60935 2025-12-29 6.5 Medium
An open redirect vulnerability in the login endpoint of Blitz Panel v1.17.0 allows attackers to redirect users to malicious domains via a crafted URL. This issue affects the next_url parameter in the login endpoint and could lead to phishing or token theft after successful authentication.
CVE-2023-54137 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: vfio/type1: fix cap_migration information leak Fix an information leak where an uninitialized hole in struct vfio_iommu_type1_info_cap_migration on the stack is exposed to userspace. The definition of struct vfio_iommu_type1_info_cap_migration contains a hole as shown in this pahole(1) output: struct vfio_iommu_type1_info_cap_migration { struct vfio_info_cap_header header; /* 0 8 */ __u32 flags; /* 8 4 */ /* XXX 4 bytes hole, try to pack */ __u64 pgsize_bitmap; /* 16 8 */ __u64 max_dirty_bitmap_size; /* 24 8 */ /* size: 32, cachelines: 1, members: 4 */ /* sum members: 28, holes: 1, sum holes: 4 */ /* last cacheline: 32 bytes */ }; The cap_mig variable is filled in without initializing the hole: static int vfio_iommu_migration_build_caps(struct vfio_iommu *iommu, struct vfio_info_cap *caps) { struct vfio_iommu_type1_info_cap_migration cap_mig; cap_mig.header.id = VFIO_IOMMU_TYPE1_INFO_CAP_MIGRATION; cap_mig.header.version = 1; cap_mig.flags = 0; /* support minimum pgsize */ cap_mig.pgsize_bitmap = (size_t)1 << __ffs(iommu->pgsize_bitmap); cap_mig.max_dirty_bitmap_size = DIRTY_BITMAP_SIZE_MAX; return vfio_info_add_capability(caps, &cap_mig.header, sizeof(cap_mig)); } The structure is then copied to a temporary location on the heap. At this point it's already too late and ioctl(VFIO_IOMMU_GET_INFO) copies it to userspace later: int vfio_info_add_capability(struct vfio_info_cap *caps, struct vfio_info_cap_header *cap, size_t size) { struct vfio_info_cap_header *header; header = vfio_info_cap_add(caps, size, cap->id, cap->version); if (IS_ERR(header)) return PTR_ERR(header); memcpy(header + 1, cap + 1, size - sizeof(*header)); return 0; } This issue was found by code inspection.
CVE-2023-54141 1 Linux 1 Linux Kernel 2025-12-29 7.0 High
In the Linux kernel, the following vulnerability has been resolved: wifi: ath11k: Add missing hw_ops->get_ring_selector() for IPQ5018 During sending data after clients connected, hw_ops->get_ring_selector() will be called. But for IPQ5018, this member isn't set, and the following NULL pointer exception will be occurred: [ 38.840478] 8<--- cut here --- [ 38.840517] Unable to handle kernel NULL pointer dereference at virtual address 00000000 ... [ 38.923161] PC is at 0x0 [ 38.927930] LR is at ath11k_dp_tx+0x70/0x730 [ath11k] ... [ 39.063264] Process hostapd (pid: 1034, stack limit = 0x801ceb3d) [ 39.068994] Stack: (0x856a9a68 to 0x856aa000) ... [ 39.438467] [<7f323804>] (ath11k_dp_tx [ath11k]) from [<7f314e6c>] (ath11k_mac_op_tx+0x80/0x190 [ath11k]) [ 39.446607] [<7f314e6c>] (ath11k_mac_op_tx [ath11k]) from [<7f17dbe0>] (ieee80211_handle_wake_tx_queue+0x7c/0xc0 [mac80211]) [ 39.456162] [<7f17dbe0>] (ieee80211_handle_wake_tx_queue [mac80211]) from [<7f174450>] (ieee80211_probereq_get+0x584/0x704 [mac80211]) [ 39.467443] [<7f174450>] (ieee80211_probereq_get [mac80211]) from [<7f178c40>] (ieee80211_tx_prepare_skb+0x1f8/0x248 [mac80211]) [ 39.479334] [<7f178c40>] (ieee80211_tx_prepare_skb [mac80211]) from [<7f179e28>] (__ieee80211_subif_start_xmit+0x32c/0x3d4 [mac80211]) [ 39.491053] [<7f179e28>] (__ieee80211_subif_start_xmit [mac80211]) from [<7f17af08>] (ieee80211_tx_control_port+0x19c/0x288 [mac80211]) [ 39.502946] [<7f17af08>] (ieee80211_tx_control_port [mac80211]) from [<7f0fc704>] (nl80211_tx_control_port+0x174/0x1d4 [cfg80211]) [ 39.515017] [<7f0fc704>] (nl80211_tx_control_port [cfg80211]) from [<808ceac4>] (genl_rcv_msg+0x154/0x340) [ 39.526814] [<808ceac4>] (genl_rcv_msg) from [<808cdb74>] (netlink_rcv_skb+0xb8/0x11c) [ 39.536446] [<808cdb74>] (netlink_rcv_skb) from [<808ce1d0>] (genl_rcv+0x28/0x34) [ 39.544344] [<808ce1d0>] (genl_rcv) from [<808cd234>] (netlink_unicast+0x174/0x274) [ 39.551895] [<808cd234>] (netlink_unicast) from [<808cd510>] (netlink_sendmsg+0x1dc/0x440) [ 39.559362] [<808cd510>] (netlink_sendmsg) from [<808596e0>] (____sys_sendmsg+0x1a8/0x1fc) [ 39.567697] [<808596e0>] (____sys_sendmsg) from [<8085b1a8>] (___sys_sendmsg+0xa4/0xdc) [ 39.575941] [<8085b1a8>] (___sys_sendmsg) from [<8085b310>] (sys_sendmsg+0x44/0x74) [ 39.583841] [<8085b310>] (sys_sendmsg) from [<80300060>] (ret_fast_syscall+0x0/0x40) ... [ 39.620734] Code: bad PC value [ 39.625869] ---[ end trace 8aef983ad3cbc032 ]---
CVE-2023-54144 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drm/amdkfd: Fix kernel warning during topology setup This patch fixes the following kernel warning seen during driver load by correctly initializing the p2plink attr before creating the sysfs file: [ +0.002865] ------------[ cut here ]------------ [ +0.002327] kobject: '(null)' (0000000056260cfb): is not initialized, yet kobject_put() is being called. [ +0.004780] WARNING: CPU: 32 PID: 1006 at lib/kobject.c:718 kobject_put+0xaa/0x1c0 [ +0.001361] Call Trace: [ +0.001234] <TASK> [ +0.001067] kfd_remove_sysfs_node_entry+0x24a/0x2d0 [amdgpu] [ +0.003147] kfd_topology_update_sysfs+0x3d/0x750 [amdgpu] [ +0.002890] kfd_topology_add_device+0xbd7/0xc70 [amdgpu] [ +0.002844] ? lock_release+0x13c/0x2e0 [ +0.001936] ? smu_cmn_send_smc_msg_with_param+0x1e8/0x2d0 [amdgpu] [ +0.003313] ? amdgpu_dpm_get_mclk+0x54/0x60 [amdgpu] [ +0.002703] kgd2kfd_device_init.cold+0x39f/0x4ed [amdgpu] [ +0.002930] amdgpu_amdkfd_device_init+0x13d/0x1f0 [amdgpu] [ +0.002944] amdgpu_device_init.cold+0x1464/0x17b4 [amdgpu] [ +0.002970] ? pci_bus_read_config_word+0x43/0x80 [ +0.002380] amdgpu_driver_load_kms+0x15/0x100 [amdgpu] [ +0.002744] amdgpu_pci_probe+0x147/0x370 [amdgpu] [ +0.002522] local_pci_probe+0x40/0x80 [ +0.001896] work_for_cpu_fn+0x10/0x20 [ +0.001892] process_one_work+0x26e/0x5a0 [ +0.002029] worker_thread+0x1fd/0x3e0 [ +0.001890] ? process_one_work+0x5a0/0x5a0 [ +0.002115] kthread+0xea/0x110 [ +0.001618] ? kthread_complete_and_exit+0x20/0x20 [ +0.002422] ret_from_fork+0x1f/0x30 [ +0.001808] </TASK> [ +0.001103] irq event stamp: 59837 [ +0.001718] hardirqs last enabled at (59849): [<ffffffffb30fab12>] __up_console_sem+0x52/0x60 [ +0.004414] hardirqs last disabled at (59860): [<ffffffffb30faaf7>] __up_console_sem+0x37/0x60 [ +0.004414] softirqs last enabled at (59654): [<ffffffffb307d9c7>] irq_exit_rcu+0xd7/0x130 [ +0.004205] softirqs last disabled at (59649): [<ffffffffb307d9c7>] irq_exit_rcu+0xd7/0x130 [ +0.004203] ---[ end trace 0000000000000000 ]---
CVE-2023-54152 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: can: j1939: prevent deadlock by moving j1939_sk_errqueue() This commit addresses a deadlock situation that can occur in certain scenarios, such as when running data TP/ETP transfer and subscribing to the error queue while receiving a net down event. The deadlock involves locks in the following order: 3 j1939_session_list_lock -> active_session_list_lock j1939_session_activate ... j1939_sk_queue_activate_next -> sk_session_queue_lock ... j1939_xtp_rx_eoma_one 2 j1939_sk_queue_drop_all -> sk_session_queue_lock ... j1939_sk_netdev_event_netdown -> j1939_socks_lock j1939_netdev_notify 1 j1939_sk_errqueue -> j1939_socks_lock __j1939_session_cancel -> active_session_list_lock j1939_tp_rxtimer CPU0 CPU1 ---- ---- lock(&priv->active_session_list_lock); lock(&jsk->sk_session_queue_lock); lock(&priv->active_session_list_lock); lock(&priv->j1939_socks_lock); The solution implemented in this commit is to move the j1939_sk_errqueue() call out of the active_session_list_lock context, thus preventing the deadlock situation.
CVE-2023-54153 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ext4: turn quotas off if mount failed after enabling quotas Yi found during a review of the patch "ext4: don't BUG on inconsistent journal feature" that when ext4_mark_recovery_complete() returns an error value, the error handling path does not turn off the enabled quotas, which triggers the following kmemleak: ================================================================ unreferenced object 0xffff8cf68678e7c0 (size 64): comm "mount", pid 746, jiffies 4294871231 (age 11.540s) hex dump (first 32 bytes): 00 90 ef 82 f6 8c ff ff 00 00 00 00 41 01 00 00 ............A... c7 00 00 00 bd 00 00 00 0a 00 00 00 48 00 00 00 ............H... backtrace: [<00000000c561ef24>] __kmem_cache_alloc_node+0x4d4/0x880 [<00000000d4e621d7>] kmalloc_trace+0x39/0x140 [<00000000837eee74>] v2_read_file_info+0x18a/0x3a0 [<0000000088f6c877>] dquot_load_quota_sb+0x2ed/0x770 [<00000000340a4782>] dquot_load_quota_inode+0xc6/0x1c0 [<0000000089a18bd5>] ext4_enable_quotas+0x17e/0x3a0 [ext4] [<000000003a0268fa>] __ext4_fill_super+0x3448/0x3910 [ext4] [<00000000b0f2a8a8>] ext4_fill_super+0x13d/0x340 [ext4] [<000000004a9489c4>] get_tree_bdev+0x1dc/0x370 [<000000006e723bf1>] ext4_get_tree+0x1d/0x30 [ext4] [<00000000c7cb663d>] vfs_get_tree+0x31/0x160 [<00000000320e1bed>] do_new_mount+0x1d5/0x480 [<00000000c074654c>] path_mount+0x22e/0xbe0 [<0000000003e97a8e>] do_mount+0x95/0xc0 [<000000002f3d3736>] __x64_sys_mount+0xc4/0x160 [<0000000027d2140c>] do_syscall_64+0x3f/0x90 ================================================================ To solve this problem, we add a "failed_mount10" tag, and call ext4_quota_off_umount() in this tag to release the enabled qoutas.
CVE-2023-54154 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: scsi: target: core: Fix target_cmd_counter leak The target_cmd_counter struct allocated via target_alloc_cmd_counter() is never freed, resulting in leaks across various transport types, e.g.: unreferenced object 0xffff88801f920120 (size 96): comm "sh", pid 102, jiffies 4294892535 (age 713.412s) hex dump (first 32 bytes): 07 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 00 00 00 00 00 00 00 00 38 01 92 1f 80 88 ff ff ........8....... backtrace: [<00000000e58a6252>] kmalloc_trace+0x11/0x20 [<0000000043af4b2f>] target_alloc_cmd_counter+0x17/0x90 [target_core_mod] [<000000007da2dfa7>] target_setup_session+0x2d/0x140 [target_core_mod] [<0000000068feef86>] tcm_loop_tpg_nexus_store+0x19b/0x350 [tcm_loop] [<000000006a80e021>] configfs_write_iter+0xb1/0x120 [<00000000e9f4d860>] vfs_write+0x2e4/0x3c0 [<000000008143433b>] ksys_write+0x80/0xb0 [<00000000a7df29b2>] do_syscall_64+0x42/0x90 [<0000000053f45fb8>] entry_SYSCALL_64_after_hwframe+0x6e/0xd8 Free the structure alongside the corresponding iscsit_conn / se_sess parent.
CVE-2023-54155 1 Linux 1 Linux Kernel 2025-12-29 7.0 High
In the Linux kernel, the following vulnerability has been resolved: net: core: remove unnecessary frame_sz check in bpf_xdp_adjust_tail() Syzkaller reported the following issue: ======================================= Too BIG xdp->frame_sz = 131072 WARNING: CPU: 0 PID: 5020 at net/core/filter.c:4121 ____bpf_xdp_adjust_tail net/core/filter.c:4121 [inline] WARNING: CPU: 0 PID: 5020 at net/core/filter.c:4121 bpf_xdp_adjust_tail+0x466/0xa10 net/core/filter.c:4103 ... Call Trace: <TASK> bpf_prog_4add87e5301a4105+0x1a/0x1c __bpf_prog_run include/linux/filter.h:600 [inline] bpf_prog_run_xdp include/linux/filter.h:775 [inline] bpf_prog_run_generic_xdp+0x57e/0x11e0 net/core/dev.c:4721 netif_receive_generic_xdp net/core/dev.c:4807 [inline] do_xdp_generic+0x35c/0x770 net/core/dev.c:4866 tun_get_user+0x2340/0x3ca0 drivers/net/tun.c:1919 tun_chr_write_iter+0xe8/0x210 drivers/net/tun.c:2043 call_write_iter include/linux/fs.h:1871 [inline] new_sync_write fs/read_write.c:491 [inline] vfs_write+0x650/0xe40 fs/read_write.c:584 ksys_write+0x12f/0x250 fs/read_write.c:637 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x38/0xb0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x63/0xcd xdp->frame_sz > PAGE_SIZE check was introduced in commit c8741e2bfe87 ("xdp: Allow bpf_xdp_adjust_tail() to grow packet size"). But Jesper Dangaard Brouer <jbrouer@redhat.com> noted that after introducing the xdp_init_buff() which all XDP driver use - it's safe to remove this check. The original intend was to catch cases where XDP drivers have not been updated to use xdp.frame_sz, but that is not longer a concern (since xdp_init_buff). Running the initial syzkaller repro it was discovered that the contiguous physical memory allocation is used for both xdp paths in tun_get_user(), e.g. tun_build_skb() and tun_alloc_skb(). It was also stated by Jesper Dangaard Brouer <jbrouer@redhat.com> that XDP can work on higher order pages, as long as this is contiguous physical memory (e.g. a page).
CVE-2023-54158 1 Linux 1 Linux Kernel 2025-12-29 N/A
In the Linux kernel, the following vulnerability has been resolved: btrfs: don't free qgroup space unless specified Boris noticed in his simple quotas testing that he was getting a leak with Sweet Tea's change to subvol create that stopped doing a transaction commit. This was just a side effect of that change. In the delayed inode code we have an optimization that will free extra reservations if we think we can pack a dir item into an already modified leaf. Previously this wouldn't be triggered in the subvolume create case because we'd commit the transaction, it was still possible but much harder to trigger. It could actually be triggered if we did a mkdir && subvol create with qgroups enabled. This occurs because in btrfs_insert_delayed_dir_index(), which gets called when we're adding the dir item, we do the following: btrfs_block_rsv_release(fs_info, trans->block_rsv, bytes, NULL); if we're able to skip reserving space. The problem here is that trans->block_rsv points at the temporary block rsv for the subvolume create, which has qgroup reservations in the block rsv. This is a problem because btrfs_block_rsv_release() will do the following: if (block_rsv->qgroup_rsv_reserved >= block_rsv->qgroup_rsv_size) { qgroup_to_release = block_rsv->qgroup_rsv_reserved - block_rsv->qgroup_rsv_size; block_rsv->qgroup_rsv_reserved = block_rsv->qgroup_rsv_size; } The temporary block rsv just has ->qgroup_rsv_reserved set, ->qgroup_rsv_size == 0. The optimization in btrfs_insert_delayed_dir_index() sets ->qgroup_rsv_reserved = 0. Then later on when we call btrfs_subvolume_release_metadata() which has btrfs_block_rsv_release(fs_info, rsv, (u64)-1, &qgroup_to_release); btrfs_qgroup_convert_reserved_meta(root, qgroup_to_release); qgroup_to_release is set to 0, and we do not convert the reserved metadata space. The problem here is that the block rsv code has been unconditionally messing with ->qgroup_rsv_reserved, because the main place this is used is delalloc, and any time we call btrfs_block_rsv_release() we do it with qgroup_to_release set, and thus do the proper accounting. The subvolume code is the only other code that uses the qgroup reservation stuff, but it's intermingled with the above optimization, and thus was getting its reservation freed out from underneath it and thus leaking the reserved space. The solution is to simply not mess with the qgroup reservations if we don't have qgroup_to_release set. This works with the existing code as anything that messes with the delalloc reservations always have qgroup_to_release set. This fixes the leak that Boris was observing.