Search

Search Results (314754 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2025-54087 1 Absolute 1 Secure Access 2025-10-16 2.6 Low
CVE-2025-54087 is a server-side request forgery vulnerability in Secure Access prior to version 14.10. Attackers with administrative privileges can publish a crafted test HTTP request originating from the Secure Access server. The attack complexity is high, there are no attack requirements, and user interaction is required. There is no direct impact to confidentiality, integrity, or availability. There is a low severity subsequent system impact to integrity.
CVE-2025-11659 1 Oranbyte 1 School Management System 2025-10-16 7.3 High
A flaw has been found in ProjectsAndPrograms School Management System up to 6b6fae5426044f89c08d0dd101c7fa71f9042a59. Affected by this vulnerability is an unknown functionality of the file /assets/uploadNotes.php. This manipulation of the argument File causes unrestricted upload. Remote exploitation of the attack is possible. The exploit has been published and may be used. This product follows a rolling release approach for continuous delivery, so version details for affected or updated releases are not provided.
CVE-2025-54088 1 Absolute 1 Secure Access 2025-10-16 6.1 Medium
CVE-2025-54088 is an open-redirect vulnerability in Secure Access prior to version 14.10. Attackers with access to the console can redirect victims to an arbitrary URL. The attack complexity is low, attack requirements are present, no privileges are required, and users must actively participate in the attack. Impact to confidentiality is low and there is no impact to integrity or availability. There are high severity impacts to confidentiality, integrity, availability in subsequent systems.
CVE-2025-54089 1 Absolute 1 Secure Access 2025-10-16 3.4 Low
CVE-2025-54089 is a cross-site scripting vulnerability in versions of secure access prior to 14.10. Attackers with administrative access to the console can interfere with another administrator’s access to the console. The attack complexity is low; there are no attack requirements. Privileges required to execute the attack are high and the victim must actively participate in the attack sequence. There is no impact to confidentiality or availability, there is a low impact to integrity.
CVE-2025-59944 2 Anysphere, Cursor 2 Cursor, Cursor 2025-10-16 8.1 High
Cursor is a code editor built for programming with AI. Versions 1.6.23 and below contain case-sensitive checks in the way Cursor IDE protects its sensitive files (e.g., */.cursor/mcp.json), which allows attackers to modify the content of these files through prompt injection and achieve remote code execution. A prompt injection can lead to full RCE through modifying sensitive files on case-insensitive fileystems. This issue is fixed in version 1.7.
CVE-2025-61926 1 Allstar 1 Reviewbot 2025-10-16 N/A
Allstar is a GitHub App to set and enforce security policies. In versions prior to 4.5, a vulnerability in Allstar’s Reviewbot component caused inbound webhook requests to be validated against a hard-coded, shared secret. The value used for the secret token was compiled into the Allstar binary and could not be configured at runtime. In practice, this meant that every deployment using Reviewbot would validate requests with the same secret unless the operator modified source code and rebuilt the component - an expectation that is not documented and is easy to miss. All Allstar releases prior to v4.5 that include the Reviewbot code path are affected. Deployments on v4.5 and later are not affected. Those who have not enabled or exposed the Reviewbot endpoint are not exposed to this issue.
CVE-2025-61787 2 Deno, Microsoft 2 Deno, Windows 2025-10-16 8.1 High
Deno is a JavaScript, TypeScript, and WebAssembly runtime. Versions prior to 2.5.3 and 2.2.15 are vulnerable to Command Line Injection attacks on Windows when batch files are executed. In Windows, ``CreateProcess()`` always implicitly spawns ``cmd.exe`` if a batch file (.bat, .cmd, etc.) is being executed even if the application does not specify it via the command line. This makes Deno vulnerable to a command injection attack on Windows. Versions 2.5.3 and 2.2.15 fix the issue.
CVE-2025-61786 1 Deno 1 Deno 2025-10-16 3.3 Low
Deno is a JavaScript, TypeScript, and WebAssembly runtime. In versions prior to 2.5.3 and 2.2.15, `Deno.FsFile.prototype.stat` and `Deno.FsFile.prototype.statSync` are not limited by the permission model check `--deny-read=./`. It's possible to retrieve stats from files that the user do not have explicit read access to (the script is executed with `--deny-read=./`). Similar APIs like `Deno.stat` and `Deno.statSync` require `allow-read` permission, however, when a file is opened, even with file-write only flags and deny-read permission, it's still possible to retrieve file stats, and thus bypass the permission model. Versions 2.5.3 and 2.2.15 fix the issue.
CVE-2023-49886 1 Ibm 1 Transformation Extender Advanced 2025-10-16 9.8 Critical
IBM Standards Processing Engine 10.0.1.10 could allow a remote attacker to execute arbitrary code on the system, caused by an unsafe java deserialization. By sending specially crafted input, an attacker could exploit this vulnerability to execute arbitrary code on the system.
CVE-2025-36128 1 Ibm 1 Mq 2025-10-16 7.5 High
IBM MQ 9.1, 9.2, 9.3, 9.4 LTS and 9.3, 9.4 CD is vulnerable to a denial of service, caused by improper enforcement of the timeout on individual read operations. By conducting slowloris-type attacks, a remote attacker could exploit this vulnerability to cause a denial of service.
CVE-2025-61785 1 Deno 1 Deno 2025-10-16 3.3 Low
Deno is a JavaScript, TypeScript, and WebAssembly runtime. In versions prior to 2.5.3 and 2.2.15, `Deno.FsFile.prototype.utime` and `Deno.FsFile.prototype.utimeSync` are not limited by the permission model check `--deny-write=./`. It's possible to change to change the access (`atime`) and modification (`mtime`) times on the file stream resource even when the file is opened with `read` only permission (and `write`: `false`) and file write operations are not allowed (the script is executed with `--deny-write=./`). Similar APIs like `Deno.utime` and `Deno.utimeSync` require `allow-write` permission, however, when a file is opened, even with read only flags and deny-write permission, it's still possible to change the access (`atime`) and modification (`mtime`) times, and thus bypass the permission model. Versions 2.5.3 and 2.2.15 fix the issue.
CVE-2025-61687 1 Flowiseai 1 Flowise 2025-10-16 8.3 High
Flowise is a drag & drop user interface to build a customized large language model flow. A file upload vulnerability in version 3.0.7 of FlowiseAI allows authenticated users to upload arbitrary files without proper validation. This enables attackers to persistently store malicious Node.js web shells on the server, potentially leading to Remote Code Execution (RCE). The system fails to validate file extensions, MIME types, or file content during uploads. As a result, malicious scripts such as Node.js-based web shells can be uploaded and stored persistently on the server. These shells expose HTTP endpoints capable of executing arbitrary commands if triggered. The uploaded shell does not automatically execute, but its presence allows future exploitation via administrator error or chained vulnerabilities. This presents a high-severity threat to system integrity and confidentiality. As of time of publication, no known patched versions are available.
CVE-2025-52615 2025-10-16 3.5 Low
HCL Unica Platform is impacted by misconfigured security related HTTP headers. This can lead to less secure browser default treatment for the policies controlled by these headers.
CVE-2025-11633 2025-10-16 3.7 Low
A vulnerability was identified in Tomofun Furbo 360 and Furbo Mini. Affected by this issue is the function upload_file_to_s3 of the file collect_logs.sh of the component HTTP Traffic Handler. The manipulation leads to improper certificate validation. The attack may be initiated remotely. The attack is considered to have high complexity. The exploitation is known to be difficult. The firmware versions determined to be affected are Furbo 360 up to FB0035_FW_036 and Furbo Mini up to MC0020_FW_074. The vendor was contacted early about this disclosure but did not respond in any way.
CVE-2025-62490 2025-10-16 N/A
In quickjs, in js_print_object, when printing an array, the function first fetches the array length and then loops over it. The issue is, printing a value is not side-effect free. An attacker-defined callback could run during js_print_value, during which the array could get resized and len1 become out of bounds. This results in a use-after-free.A second instance occurs in the same function during printing of a map or set objects. The code iterates over ms->records list, but once again, elements could be removed from the list during js_print_value call.
CVE-2025-62491 2025-10-16 N/A
A Use-After-Free (UAF) vulnerability exists in the QuickJS engine's standard library when iterating over the global list of unhandled rejected promises (ts->rejected_promise_list). * The function js_std_promise_rejection_check attempts to iterate over the rejected_promise_list to report unhandled rejections using a standard list loop. * The reason for a promise rejection is processed inside the loop, including calling js_std_dump_error1(ctx, rp->reason). * If the promise rejection reason is an Error object that defines a custom property getter (e.g., via Object.defineProperty), this getter is executed during the error dumping process. * The malicious custom getter can execute JavaScript code that calls catch() on the same rejected promise being processed. * Calling catch() internally triggers js_std_promise_rejection_tracker, which then removes and frees the current promise entry (JSRejectedPromiseEntry) from the rejected_promise_list. * Since the list iteration continues using the now-freed memory pointer (el), the subsequent loop access results in a Use-After-Free condition.
CVE-2025-61789 2025-10-16 5.3 Medium
Icinga DB Web provides a graphical interface for Icinga monitoring. Before 1.1.4 and 1.2.3, an authorized user with access to Icinga DB Web, can use a custom variable in a filter that is either protected by icingadb/protect/variables or hidden by icingadb/denylist/variables, to guess values assigned to it. Versions 1.1.4 and 1.2.3 respond with an error if such a custom variable is used.
CVE-2025-59425 2 Vllm, Vllm-project 2 Vllm, Vllm 2025-10-16 7.5 High
vLLM is an inference and serving engine for large language models (LLMs). Before version 0.11.0rc2, the API key support in vLLM performs validation using a method that was vulnerable to a timing attack. API key validation uses a string comparison that takes longer the more characters the provided API key gets correct. Data analysis across many attempts could allow an attacker to determine when it finds the next correct character in the key sequence. Deployments relying on vLLM's built-in API key validation are vulnerable to authentication bypass using this technique. Version 0.11.0rc2 fixes the issue.
CVE-2025-62492 2025-10-16 N/A
A vulnerability stemming from floating-point arithmetic precision errors exists in the QuickJS engine's implementation of TypedArray.prototype.indexOf() when a negative fromIndex argument is supplied. * The fromIndex argument (read as a double variable, $d$) is used to calculate the starting position for the search. * If d is negative, the index is calculated relative to the end of the array by adding the array's length (len) to d: $$d_{new} = d + \text{len}$$ * Due to the inherent limitations of floating-point arithmetic, if the negative value $d$ is extremely small (e.g., $-1 \times 10^{-20}$), the addition $d + \text{len}$ can result in a loss of precision, yielding an outcome that is exactly equal to $\text{len}$. * The result is then converted to an integer index $k$: $k = \text{len}$. * The search function proceeds to read array elements starting from index $k$. Since valid indices are $0$ to $\text{len}-1$, starting the read at index $\text{len}$ is one element past the end of the array. This allows an attacker to cause an Out-of-Bounds Read of one element immediately following the buffer. While the scope of this read is small (one element), it can potentially lead to Information Disclosure of adjacent memory contents, depending on the execution environment.
CVE-2025-62493 2025-10-16 N/A
A vulnerability exists in the QuickJS engine's BigInt string conversion logic (js_bigint_to_string1) due to an incorrect calculation of the required number of digits, which in turn leads to reading memory past the allocated BigInt structure. * The function determines the number of characters (n_digits) needed for the string representation by calculating: $$ \\ \text{n\_digits} = (\text{n\_bits} + \text{log2\_radix} - 1) / \text{log2\_radix}$$ $$$$This formula is off-by-one in certain edge cases when calculating the necessary memory limbs. For instance, a 127-bit BigInt using radix 32 (where $\text{log2\_radix}=5$) is calculated to need $\text{n\_digits}=26$. * The maximum number of bits actually stored is $\text{n\_bits}=127$, which requires only two 64-bit limbs ($\text{JS\_LIMB\_BITS}=64$). * The conversion loop iterates $\text{n\_digits}=26$ times, attempting to read 5 bits in each iteration, totaling $26 \times 5 = 130$ bits. * In the final iterations of the loop, the code attempts to read data that spans two limbs: C c = (r->tab[pos] >> shift) | (r->tab[pos + 1] << (JS_LIMB_BITS - shift)); * Since the BigInt was only allocated two limbs, the read operation for r->tab[pos + 1] becomes an Out-of-Bounds Read when pos points to the last valid limb (e.g., $pos=1$). This vulnerability allows an attacker to cause the engine to read and process data from the memory immediately following the BigInt buffer. This can lead to Information Disclosure of sensitive data stored on the heap adjacent to the BigInt object.