CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
In the Linux kernel, the following vulnerability has been resolved:
mptcp: prevent BPF accessing lowat from a subflow socket.
Alexei reported the following splat:
WARNING: CPU: 32 PID: 3276 at net/mptcp/subflow.c:1430 subflow_data_ready+0x147/0x1c0
Modules linked in: dummy bpf_testmod(O) [last unloaded: bpf_test_no_cfi(O)]
CPU: 32 PID: 3276 Comm: test_progs Tainted: GO 6.8.0-12873-g2c43c33bfd23
Call Trace:
<TASK>
mptcp_set_rcvlowat+0x79/0x1d0
sk_setsockopt+0x6c0/0x1540
__bpf_setsockopt+0x6f/0x90
bpf_sock_ops_setsockopt+0x3c/0x90
bpf_prog_509ce5db2c7f9981_bpf_test_sockopt_int+0xb4/0x11b
bpf_prog_dce07e362d941d2b_bpf_test_socket_sockopt+0x12b/0x132
bpf_prog_348c9b5faaf10092_skops_sockopt+0x954/0xe86
__cgroup_bpf_run_filter_sock_ops+0xbc/0x250
tcp_connect+0x879/0x1160
tcp_v6_connect+0x50c/0x870
mptcp_connect+0x129/0x280
__inet_stream_connect+0xce/0x370
inet_stream_connect+0x36/0x50
bpf_trampoline_6442491565+0x49/0xef
inet_stream_connect+0x5/0x50
__sys_connect+0x63/0x90
__x64_sys_connect+0x14/0x20
The root cause of the issue is that bpf allows accessing mptcp-level
proto_ops from a tcp subflow scope.
Fix the issue detecting the problematic call and preventing any action. |
In the Linux kernel, the following vulnerability has been resolved:
net: phy: micrel: Fix potential null pointer dereference
In lan8814_get_sig_rx() and lan8814_get_sig_tx() ptp_parse_header() may
return NULL as ptp_header due to abnormal packet type or corrupted packet.
Fix this bug by adding ptp_header check.
Found by Linux Verification Center (linuxtesting.org) with SVACE. |
In the Linux kernel, the following vulnerability has been resolved:
mlxbf_gige: stop interface during shutdown
The mlxbf_gige driver intermittantly encounters a NULL pointer
exception while the system is shutting down via "reboot" command.
The mlxbf_driver will experience an exception right after executing
its shutdown() method. One example of this exception is:
Unable to handle kernel NULL pointer dereference at virtual address 0000000000000070
Mem abort info:
ESR = 0x0000000096000004
EC = 0x25: DABT (current EL), IL = 32 bits
SET = 0, FnV = 0
EA = 0, S1PTW = 0
FSC = 0x04: level 0 translation fault
Data abort info:
ISV = 0, ISS = 0x00000004
CM = 0, WnR = 0
user pgtable: 4k pages, 48-bit VAs, pgdp=000000011d373000
[0000000000000070] pgd=0000000000000000, p4d=0000000000000000
Internal error: Oops: 96000004 [#1] SMP
CPU: 0 PID: 13 Comm: ksoftirqd/0 Tainted: G S OE 5.15.0-bf.6.gef6992a #1
Hardware name: https://www.mellanox.com BlueField SoC/BlueField SoC, BIOS 4.0.2.12669 Apr 21 2023
pstate: 20400009 (nzCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
pc : mlxbf_gige_handle_tx_complete+0xc8/0x170 [mlxbf_gige]
lr : mlxbf_gige_poll+0x54/0x160 [mlxbf_gige]
sp : ffff8000080d3c10
x29: ffff8000080d3c10 x28: ffffcce72cbb7000 x27: ffff8000080d3d58
x26: ffff0000814e7340 x25: ffff331cd1a05000 x24: ffffcce72c4ea008
x23: ffff0000814e4b40 x22: ffff0000814e4d10 x21: ffff0000814e4128
x20: 0000000000000000 x19: ffff0000814e4a80 x18: ffffffffffffffff
x17: 000000000000001c x16: ffffcce72b4553f4 x15: ffff80008805b8a7
x14: 0000000000000000 x13: 0000000000000030 x12: 0101010101010101
x11: 7f7f7f7f7f7f7f7f x10: c2ac898b17576267 x9 : ffffcce720fa5404
x8 : ffff000080812138 x7 : 0000000000002e9a x6 : 0000000000000080
x5 : ffff00008de3b000 x4 : 0000000000000000 x3 : 0000000000000001
x2 : 0000000000000000 x1 : 0000000000000000 x0 : 0000000000000000
Call trace:
mlxbf_gige_handle_tx_complete+0xc8/0x170 [mlxbf_gige]
mlxbf_gige_poll+0x54/0x160 [mlxbf_gige]
__napi_poll+0x40/0x1c8
net_rx_action+0x314/0x3a0
__do_softirq+0x128/0x334
run_ksoftirqd+0x54/0x6c
smpboot_thread_fn+0x14c/0x190
kthread+0x10c/0x110
ret_from_fork+0x10/0x20
Code: 8b070000 f9000ea0 f95056c0 f86178a1 (b9407002)
---[ end trace 7cc3941aa0d8e6a4 ]---
Kernel panic - not syncing: Oops: Fatal exception in interrupt
Kernel Offset: 0x4ce722520000 from 0xffff800008000000
PHYS_OFFSET: 0x80000000
CPU features: 0x000005c1,a3330e5a
Memory Limit: none
---[ end Kernel panic - not syncing: Oops: Fatal exception in interrupt ]---
During system shutdown, the mlxbf_gige driver's shutdown() is always executed.
However, the driver's stop() method will only execute if networking interface
configuration logic within the Linux distribution has been setup to do so.
If shutdown() executes but stop() does not execute, NAPI remains enabled
and this can lead to an exception if NAPI is scheduled while the hardware
interface has only been partially deinitialized.
The networking interface managed by the mlxbf_gige driver must be properly
stopped during system shutdown so that IFF_UP is cleared, the hardware
interface is put into a clean state, and NAPI is fully deinitialized. |
In the Linux kernel, the following vulnerability has been resolved:
io_uring/kbuf: hold io_buffer_list reference over mmap
If we look up the kbuf, ensure that it doesn't get unregistered until
after we're done with it. Since we're inside mmap, we cannot safely use
the io_uring lock. Rely on the fact that we can lookup the buffer list
under RCU now and grab a reference to it, preventing it from being
unregistered until we're done with it. The lookup returns the
io_buffer_list directly with it referenced. |
In the Linux kernel, the following vulnerability has been resolved:
of: module: prevent NULL pointer dereference in vsnprintf()
In of_modalias(), we can get passed the str and len parameters which would
cause a kernel oops in vsnprintf() since it only allows passing a NULL ptr
when the length is also 0. Also, we need to filter out the negative values
of the len parameter as these will result in a really huge buffer since
snprintf() takes size_t parameter while ours is ssize_t...
Found by Linux Verification Center (linuxtesting.org) with the Svace static
analysis tool. |
In the Linux kernel, the following vulnerability has been resolved:
smb: client: fix UAF in smb2_reconnect_server()
The UAF bug is due to smb2_reconnect_server() accessing a session that
is already being teared down by another thread that is executing
__cifs_put_smb_ses(). This can happen when (a) the client has
connection to the server but no session or (b) another thread ends up
setting @ses->ses_status again to something different than
SES_EXITING.
To fix this, we need to make sure to unconditionally set
@ses->ses_status to SES_EXITING and prevent any other threads from
setting a new status while we're still tearing it down.
The following can be reproduced by adding some delay to right after
the ipc is freed in __cifs_put_smb_ses() - which will give
smb2_reconnect_server() worker a chance to run and then accessing
@ses->ipc:
kinit ...
mount.cifs //srv/share /mnt/1 -o sec=krb5,nohandlecache,echo_interval=10
[disconnect srv]
ls /mnt/1 &>/dev/null
sleep 30
kdestroy
[reconnect srv]
sleep 10
umount /mnt/1
...
CIFS: VFS: Verify user has a krb5 ticket and keyutils is installed
CIFS: VFS: \\srv Send error in SessSetup = -126
CIFS: VFS: Verify user has a krb5 ticket and keyutils is installed
CIFS: VFS: \\srv Send error in SessSetup = -126
general protection fault, probably for non-canonical address
0x6b6b6b6b6b6b6b6b: 0000 [#1] PREEMPT SMP NOPTI
CPU: 3 PID: 50 Comm: kworker/3:1 Not tainted 6.9.0-rc2 #1
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-1.fc39
04/01/2014
Workqueue: cifsiod smb2_reconnect_server [cifs]
RIP: 0010:__list_del_entry_valid_or_report+0x33/0xf0
Code: 4f 08 48 85 d2 74 42 48 85 c9 74 59 48 b8 00 01 00 00 00 00 ad
de 48 39 c2 74 61 48 b8 22 01 00 00 00 00 74 69 <48> 8b 01 48 39 f8 75
7b 48 8b 72 08 48 39 c6 0f 85 88 00 00 00 b8
RSP: 0018:ffffc900001bfd70 EFLAGS: 00010a83
RAX: dead000000000122 RBX: ffff88810da53838 RCX: 6b6b6b6b6b6b6b6b
RDX: 6b6b6b6b6b6b6b6b RSI: ffffffffc02f6878 RDI: ffff88810da53800
RBP: ffff88810da53800 R08: 0000000000000001 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000001 R12: ffff88810c064000
R13: 0000000000000001 R14: ffff88810c064000 R15: ffff8881039cc000
FS: 0000000000000000(0000) GS:ffff888157c00000(0000)
knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007fe3728b1000 CR3: 000000010caa4000 CR4: 0000000000750ef0
PKRU: 55555554
Call Trace:
<TASK>
? die_addr+0x36/0x90
? exc_general_protection+0x1c1/0x3f0
? asm_exc_general_protection+0x26/0x30
? __list_del_entry_valid_or_report+0x33/0xf0
__cifs_put_smb_ses+0x1ae/0x500 [cifs]
smb2_reconnect_server+0x4ed/0x710 [cifs]
process_one_work+0x205/0x6b0
worker_thread+0x191/0x360
? __pfx_worker_thread+0x10/0x10
kthread+0xe2/0x110
? __pfx_kthread+0x10/0x10
ret_from_fork+0x34/0x50
? __pfx_kthread+0x10/0x10
ret_from_fork_asm+0x1a/0x30
</TASK> |
In the Linux kernel, the following vulnerability has been resolved:
smb: client: guarantee refcounted children from parent session
Avoid potential use-after-free bugs when walking DFS referrals,
mounting and performing DFS failover by ensuring that all children
from parent @tcon->ses are also refcounted. They're all needed across
the entire DFS mount. Get rid of @tcon->dfs_ses_list while we're at
it, too. |
In the Linux kernel, the following vulnerability has been resolved:
smb: client: fix potential UAF in cifs_stats_proc_show()
Skip sessions that are being teared down (status == SES_EXITING) to
avoid UAF. |
In the Linux kernel, the following vulnerability has been resolved:
smb: client: fix potential UAF in cifs_dump_full_key()
Skip sessions that are being teared down (status == SES_EXITING) to
avoid UAF. |
In the Linux kernel, the following vulnerability has been resolved:
smb: client: fix potential UAF in smb2_is_valid_oplock_break()
Skip sessions that are being teared down (status == SES_EXITING) to
avoid UAF. |
In the Linux kernel, the following vulnerability has been resolved:
smb: client: fix potential UAF in smb2_is_valid_lease_break()
Skip sessions that are being teared down (status == SES_EXITING) to
avoid UAF. |
In the Linux kernel, the following vulnerability has been resolved:
smb: client: fix potential UAF in is_valid_oplock_break()
Skip sessions that are being teared down (status == SES_EXITING) to
avoid UAF. |
In the Linux kernel, the following vulnerability has been resolved:
smb: client: fix potential UAF in smb2_is_network_name_deleted()
Skip sessions that are being teared down (status == SES_EXITING) to
avoid UAF. |
In the Linux kernel, the following vulnerability has been resolved:
smb: client: fix potential UAF in cifs_signal_cifsd_for_reconnect()
Skip sessions that are being teared down (status == SES_EXITING) to
avoid UAF. |
In the Linux kernel, the following vulnerability has been resolved:
block: fix module reference leakage from bdev_open_by_dev error path
At the time bdev_may_open() is called, module reference is grabbed
already, hence module reference should be released if bdev_may_open()
failed.
This problem is found by code review. |
In the Linux kernel, the following vulnerability has been resolved:
icmp: prevent possible NULL dereferences from icmp_build_probe()
First problem is a double call to __in_dev_get_rcu(), because
the second one could return NULL.
if (__in_dev_get_rcu(dev) && __in_dev_get_rcu(dev)->ifa_list)
Second problem is a read from dev->ip6_ptr with no NULL check:
if (!list_empty(&rcu_dereference(dev->ip6_ptr)->addr_list))
Use the correct RCU API to fix these.
v2: add missing include <net/addrconf.h> |
In the Linux kernel, the following vulnerability has been resolved:
mlxsw: spectrum_acl_tcam: Fix possible use-after-free during activity update
The rule activity update delayed work periodically traverses the list of
configured rules and queries their activity from the device.
As part of this task it accesses the entry pointed by 'ventry->entry',
but this entry can be changed concurrently by the rehash delayed work,
leading to a use-after-free [1].
Fix by closing the race and perform the activity query under the
'vregion->lock' mutex.
[1]
BUG: KASAN: slab-use-after-free in mlxsw_sp_acl_tcam_flower_rule_activity_get+0x121/0x140
Read of size 8 at addr ffff8881054ed808 by task kworker/0:18/181
CPU: 0 PID: 181 Comm: kworker/0:18 Not tainted 6.9.0-rc2-custom-00781-gd5ab772d32f7 #2
Hardware name: Mellanox Technologies Ltd. MSN3700/VMOD0005, BIOS 5.11 01/06/2019
Workqueue: mlxsw_core mlxsw_sp_acl_rule_activity_update_work
Call Trace:
<TASK>
dump_stack_lvl+0xc6/0x120
print_report+0xce/0x670
kasan_report+0xd7/0x110
mlxsw_sp_acl_tcam_flower_rule_activity_get+0x121/0x140
mlxsw_sp_acl_rule_activity_update_work+0x219/0x400
process_one_work+0x8eb/0x19b0
worker_thread+0x6c9/0xf70
kthread+0x2c9/0x3b0
ret_from_fork+0x4d/0x80
ret_from_fork_asm+0x1a/0x30
</TASK>
Allocated by task 1039:
kasan_save_stack+0x33/0x60
kasan_save_track+0x14/0x30
__kasan_kmalloc+0x8f/0xa0
__kmalloc+0x19c/0x360
mlxsw_sp_acl_tcam_entry_create+0x7b/0x1f0
mlxsw_sp_acl_tcam_vchunk_migrate_all+0x30d/0xb50
mlxsw_sp_acl_tcam_vregion_rehash_work+0x157/0x1300
process_one_work+0x8eb/0x19b0
worker_thread+0x6c9/0xf70
kthread+0x2c9/0x3b0
ret_from_fork+0x4d/0x80
ret_from_fork_asm+0x1a/0x30
Freed by task 1039:
kasan_save_stack+0x33/0x60
kasan_save_track+0x14/0x30
kasan_save_free_info+0x3b/0x60
poison_slab_object+0x102/0x170
__kasan_slab_free+0x14/0x30
kfree+0xc1/0x290
mlxsw_sp_acl_tcam_vchunk_migrate_all+0x3d7/0xb50
mlxsw_sp_acl_tcam_vregion_rehash_work+0x157/0x1300
process_one_work+0x8eb/0x19b0
worker_thread+0x6c9/0xf70
kthread+0x2c9/0x3b0
ret_from_fork+0x4d/0x80
ret_from_fork_asm+0x1a/0x30 |
In the Linux kernel, the following vulnerability has been resolved:
mlxsw: spectrum_acl_tcam: Fix possible use-after-free during rehash
The rehash delayed work migrates filters from one region to another
according to the number of available credits.
The migrated from region is destroyed at the end of the work if the
number of credits is non-negative as the assumption is that this is
indicative of migration being complete. This assumption is incorrect as
a non-negative number of credits can also be the result of a failed
migration.
The destruction of a region that still has filters referencing it can
result in a use-after-free [1].
Fix by not destroying the region if migration failed.
[1]
BUG: KASAN: slab-use-after-free in mlxsw_sp_acl_ctcam_region_entry_remove+0x21d/0x230
Read of size 8 at addr ffff8881735319e8 by task kworker/0:31/3858
CPU: 0 PID: 3858 Comm: kworker/0:31 Tainted: G W 6.9.0-rc2-custom-00782-gf2275c2157d8 #5
Hardware name: Mellanox Technologies Ltd. MSN3700/VMOD0005, BIOS 5.11 01/06/2019
Workqueue: mlxsw_core mlxsw_sp_acl_tcam_vregion_rehash_work
Call Trace:
<TASK>
dump_stack_lvl+0xc6/0x120
print_report+0xce/0x670
kasan_report+0xd7/0x110
mlxsw_sp_acl_ctcam_region_entry_remove+0x21d/0x230
mlxsw_sp_acl_ctcam_entry_del+0x2e/0x70
mlxsw_sp_acl_atcam_entry_del+0x81/0x210
mlxsw_sp_acl_tcam_vchunk_migrate_all+0x3cd/0xb50
mlxsw_sp_acl_tcam_vregion_rehash_work+0x157/0x1300
process_one_work+0x8eb/0x19b0
worker_thread+0x6c9/0xf70
kthread+0x2c9/0x3b0
ret_from_fork+0x4d/0x80
ret_from_fork_asm+0x1a/0x30
</TASK>
Allocated by task 174:
kasan_save_stack+0x33/0x60
kasan_save_track+0x14/0x30
__kasan_kmalloc+0x8f/0xa0
__kmalloc+0x19c/0x360
mlxsw_sp_acl_tcam_region_create+0xdf/0x9c0
mlxsw_sp_acl_tcam_vregion_rehash_work+0x954/0x1300
process_one_work+0x8eb/0x19b0
worker_thread+0x6c9/0xf70
kthread+0x2c9/0x3b0
ret_from_fork+0x4d/0x80
ret_from_fork_asm+0x1a/0x30
Freed by task 7:
kasan_save_stack+0x33/0x60
kasan_save_track+0x14/0x30
kasan_save_free_info+0x3b/0x60
poison_slab_object+0x102/0x170
__kasan_slab_free+0x14/0x30
kfree+0xc1/0x290
mlxsw_sp_acl_tcam_region_destroy+0x272/0x310
mlxsw_sp_acl_tcam_vregion_rehash_work+0x731/0x1300
process_one_work+0x8eb/0x19b0
worker_thread+0x6c9/0xf70
kthread+0x2c9/0x3b0
ret_from_fork+0x4d/0x80
ret_from_fork_asm+0x1a/0x30 |
In the Linux kernel, the following vulnerability has been resolved:
mlxsw: spectrum_acl_tcam: Fix memory leak during rehash
The rehash delayed work migrates filters from one region to another.
This is done by iterating over all chunks (all the filters with the same
priority) in the region and in each chunk iterating over all the
filters.
If the migration fails, the code tries to migrate the filters back to
the old region. However, the rollback itself can also fail in which case
another migration will be erroneously performed. Besides the fact that
this ping pong is not a very good idea, it also creates a problem.
Each virtual chunk references two chunks: The currently used one
('vchunk->chunk') and a backup ('vchunk->chunk2'). During migration the
first holds the chunk we want to migrate filters to and the second holds
the chunk we are migrating filters from.
The code currently assumes - but does not verify - that the backup chunk
does not exist (NULL) if the currently used chunk does not reference the
target region. This assumption breaks when we are trying to rollback a
rollback, resulting in the backup chunk being overwritten and leaked
[1].
Fix by not rolling back a failed rollback and add a warning to avoid
future cases.
[1]
WARNING: CPU: 5 PID: 1063 at lib/parman.c:291 parman_destroy+0x17/0x20
Modules linked in:
CPU: 5 PID: 1063 Comm: kworker/5:11 Tainted: G W 6.9.0-rc2-custom-00784-gc6a05c468a0b #14
Hardware name: Mellanox Technologies Ltd. MSN3700/VMOD0005, BIOS 5.11 01/06/2019
Workqueue: mlxsw_core mlxsw_sp_acl_tcam_vregion_rehash_work
RIP: 0010:parman_destroy+0x17/0x20
[...]
Call Trace:
<TASK>
mlxsw_sp_acl_atcam_region_fini+0x19/0x60
mlxsw_sp_acl_tcam_region_destroy+0x49/0xf0
mlxsw_sp_acl_tcam_vregion_rehash_work+0x1f1/0x470
process_one_work+0x151/0x370
worker_thread+0x2cb/0x3e0
kthread+0xd0/0x100
ret_from_fork+0x34/0x50
ret_from_fork_asm+0x1a/0x30
</TASK> |
In the Linux kernel, the following vulnerability has been resolved:
mlxsw: spectrum_acl_tcam: Fix memory leak when canceling rehash work
The rehash delayed work is rescheduled with a delay if the number of
credits at end of the work is not negative as supposedly it means that
the migration ended. Otherwise, it is rescheduled immediately.
After "mlxsw: spectrum_acl_tcam: Fix possible use-after-free during
rehash" the above is no longer accurate as a non-negative number of
credits is no longer indicative of the migration being done. It can also
happen if the work encountered an error in which case the migration will
resume the next time the work is scheduled.
The significance of the above is that it is possible for the work to be
pending and associated with hints that were allocated when the migration
started. This leads to the hints being leaked [1] when the work is
canceled while pending as part of ACL region dismantle.
Fix by freeing the hints if hints are associated with a work that was
canceled while pending.
Blame the original commit since the reliance on not having a pending
work associated with hints is fragile.
[1]
unreferenced object 0xffff88810e7c3000 (size 256):
comm "kworker/0:16", pid 176, jiffies 4295460353
hex dump (first 32 bytes):
00 30 95 11 81 88 ff ff 61 00 00 00 00 00 00 80 .0......a.......
00 00 61 00 40 00 00 00 00 00 00 00 04 00 00 00 ..a.@...........
backtrace (crc 2544ddb9):
[<00000000cf8cfab3>] kmalloc_trace+0x23f/0x2a0
[<000000004d9a1ad9>] objagg_hints_get+0x42/0x390
[<000000000b143cf3>] mlxsw_sp_acl_erp_rehash_hints_get+0xca/0x400
[<0000000059bdb60a>] mlxsw_sp_acl_tcam_vregion_rehash_work+0x868/0x1160
[<00000000e81fd734>] process_one_work+0x59c/0xf20
[<00000000ceee9e81>] worker_thread+0x799/0x12c0
[<00000000bda6fe39>] kthread+0x246/0x300
[<0000000070056d23>] ret_from_fork+0x34/0x70
[<00000000dea2b93e>] ret_from_fork_asm+0x1a/0x30 |