| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
net: enetc: fix the deadlock of enetc_mdio_lock
After applying the workaround for err050089, the LS1028A platform
experiences RCU stalls on RT kernel. This issue is caused by the
recursive acquisition of the read lock enetc_mdio_lock. Here list some
of the call stacks identified under the enetc_poll path that may lead to
a deadlock:
enetc_poll
-> enetc_lock_mdio
-> enetc_clean_rx_ring OR napi_complete_done
-> napi_gro_receive
-> enetc_start_xmit
-> enetc_lock_mdio
-> enetc_map_tx_buffs
-> enetc_unlock_mdio
-> enetc_unlock_mdio
After enetc_poll acquires the read lock, a higher-priority writer attempts
to acquire the lock, causing preemption. The writer detects that a
read lock is already held and is scheduled out. However, readers under
enetc_poll cannot acquire the read lock again because a writer is already
waiting, leading to a thread hang.
Currently, the deadlock is avoided by adjusting enetc_lock_mdio to prevent
recursive lock acquisition. |
| In the Linux kernel, the following vulnerability has been resolved:
net/mlx5e: RX, Fix generating skb from non-linear xdp_buff for striding RQ
XDP programs can change the layout of an xdp_buff through
bpf_xdp_adjust_tail() and bpf_xdp_adjust_head(). Therefore, the driver
cannot assume the size of the linear data area nor fragments. Fix the
bug in mlx5 by generating skb according to xdp_buff after XDP programs
run.
Currently, when handling multi-buf XDP, the mlx5 driver assumes the
layout of an xdp_buff to be unchanged. That is, the linear data area
continues to be empty and fragments remain the same. This may cause
the driver to generate erroneous skb or triggering a kernel
warning. When an XDP program added linear data through
bpf_xdp_adjust_head(), the linear data will be ignored as
mlx5e_build_linear_skb() builds an skb without linear data and then
pull data from fragments to fill the linear data area. When an XDP
program has shrunk the non-linear data through bpf_xdp_adjust_tail(),
the delta passed to __pskb_pull_tail() may exceed the actual nonlinear
data size and trigger the BUG_ON in it.
To fix the issue, first record the original number of fragments. If the
number of fragments changes after the XDP program runs, rewind the end
fragment pointer by the difference and recalculate the truesize. Then,
build the skb with the linear data area matching the xdp_buff. Finally,
only pull data in if there is non-linear data and fill the linear part
up to 256 bytes. |
| In the Linux kernel, the following vulnerability has been resolved:
ksm: use range-walk function to jump over holes in scan_get_next_rmap_item
Currently, scan_get_next_rmap_item() walks every page address in a VMA to
locate mergeable pages. This becomes highly inefficient when scanning
large virtual memory areas that contain mostly unmapped regions, causing
ksmd to use large amount of cpu without deduplicating much pages.
This patch replaces the per-address lookup with a range walk using
walk_page_range(). The range walker allows KSM to skip over entire
unmapped holes in a VMA, avoiding unnecessary lookups. This problem was
previously discussed in [1].
Consider the following test program which creates a 32 TiB mapping in the
virtual address space but only populates a single page:
#include <unistd.h>
#include <stdio.h>
#include <sys/mman.h>
/* 32 TiB */
const size_t size = 32ul * 1024 * 1024 * 1024 * 1024;
int main() {
char *area = mmap(NULL, size, PROT_READ | PROT_WRITE,
MAP_NORESERVE | MAP_PRIVATE | MAP_ANON, -1, 0);
if (area == MAP_FAILED) {
perror("mmap() failed\n");
return -1;
}
/* Populate a single page such that we get an anon_vma. */
*area = 0;
/* Enable KSM. */
madvise(area, size, MADV_MERGEABLE);
pause();
return 0;
}
$ ./ksm-sparse &
$ echo 1 > /sys/kernel/mm/ksm/run
Without this patch ksmd uses 100% of the cpu for a long time (more then 1
hour in my test machine) scanning all the 32 TiB virtual address space
that contain only one mapped page. This makes ksmd essentially deadlocked
not able to deduplicate anything of value. With this patch ksmd walks
only the one mapped page and skips the rest of the 32 TiB virtual address
space, making the scan fast using little cpu. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: iwlwifi: fix potential use after free in iwl_mld_remove_link()
This code frees "link" by calling kfree_rcu(link, rcu_head) and then it
dereferences "link" to get the "link->fw_id". Save the "link->fw_id"
first to avoid a potential use after free. |
| In the Linux kernel, the following vulnerability has been resolved:
net: usb: qmi_wwan: initialize MAC header offset in qmimux_rx_fixup
Raw IP packets have no MAC header, leaving skb->mac_header uninitialized.
This can trigger kernel panics on ARM64 when xfrm or other subsystems
access the offset due to strict alignment checks.
Initialize the MAC header to prevent such crashes.
This can trigger kernel panics on ARM when running IPsec over the
qmimux0 interface.
Example trace:
Internal error: Oops: 000000009600004f [#1] SMP
CPU: 0 UID: 0 PID: 0 Comm: swapper/0 Not tainted 6.12.34-gbe78e49cb433 #1
Hardware name: LS1028A RDB Board (DT)
pstate: 60000005 (nZCv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--)
pc : xfrm_input+0xde8/0x1318
lr : xfrm_input+0x61c/0x1318
sp : ffff800080003b20
Call trace:
xfrm_input+0xde8/0x1318
xfrm6_rcv+0x38/0x44
xfrm6_esp_rcv+0x48/0xa8
ip6_protocol_deliver_rcu+0x94/0x4b0
ip6_input_finish+0x44/0x70
ip6_input+0x44/0xc0
ipv6_rcv+0x6c/0x114
__netif_receive_skb_one_core+0x5c/0x8c
__netif_receive_skb+0x18/0x60
process_backlog+0x78/0x17c
__napi_poll+0x38/0x180
net_rx_action+0x168/0x2f0 |
| In the Linux kernel, the following vulnerability has been resolved:
net: ipv6: fix field-spanning memcpy warning in AH output
Fix field-spanning memcpy warnings in ah6_output() and
ah6_output_done() where extension headers are copied to/from IPv6
address fields, triggering fortify-string warnings about writes beyond
the 16-byte address fields.
memcpy: detected field-spanning write (size 40) of single field "&top_iph->saddr" at net/ipv6/ah6.c:439 (size 16)
WARNING: CPU: 0 PID: 8838 at net/ipv6/ah6.c:439 ah6_output+0xe7e/0x14e0 net/ipv6/ah6.c:439
The warnings are false positives as the extension headers are
intentionally placed after the IPv6 header in memory. Fix by properly
copying addresses and extension headers separately, and introduce
helper functions to avoid code duplication. |
| systeminformation is a System and OS information library for node.js. In versions prior to 5.27.14, the `fsSize()` function in systeminformation is vulnerable to OS command injection on Windows systems. The optional `drive` parameter is directly concatenated into a PowerShell command without sanitization, allowing arbitrary command execution when user-controlled input reaches this function. The actual exploitability depends on how applications use this function. If an application does not pass user-controlled input to `fsSize()`, it is not vulnerable. Version 5.27.14 contains a patch. |
| In the Linux kernel, the following vulnerability has been resolved:
mptcp: fix address removal logic in mptcp_pm_nl_rm_addr
Fix inverted WARN_ON_ONCE condition that prevented normal address
removal counter updates. The current code only executes decrement
logic when the counter is already 0 (abnormal state), while
normal removals (counter > 0) are ignored. |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: target: tcm_loop: Fix segfault in tcm_loop_tpg_address_show()
If the allocation of tl_hba->sh fails in tcm_loop_driver_probe() and we
attempt to dereference it in tcm_loop_tpg_address_show() we will get a
segfault, see below for an example. So, check tl_hba->sh before
dereferencing it.
Unable to allocate struct scsi_host
BUG: kernel NULL pointer dereference, address: 0000000000000194
#PF: supervisor read access in kernel mode
#PF: error_code(0x0000) - not-present page
PGD 0 P4D 0
Oops: 0000 [#1] PREEMPT SMP NOPTI
CPU: 1 PID: 8356 Comm: tokio-runtime-w Not tainted 6.6.104.2-4.azl3 #1
Hardware name: Microsoft Corporation Virtual Machine/Virtual Machine, BIOS Hyper-V UEFI Release v4.1 09/28/2024
RIP: 0010:tcm_loop_tpg_address_show+0x2e/0x50 [tcm_loop]
...
Call Trace:
<TASK>
configfs_read_iter+0x12d/0x1d0 [configfs]
vfs_read+0x1b5/0x300
ksys_read+0x6f/0xf0
... |
| In the Linux kernel, the following vulnerability has been resolved:
net: atlantic: fix fragment overflow handling in RX path
The atlantic driver can receive packets with more than MAX_SKB_FRAGS (17)
fragments when handling large multi-descriptor packets. This causes an
out-of-bounds write in skb_add_rx_frag_netmem() leading to kernel panic.
The issue occurs because the driver doesn't check the total number of
fragments before calling skb_add_rx_frag(). When a packet requires more
than MAX_SKB_FRAGS fragments, the fragment index exceeds the array bounds.
Fix by assuming there will be an extra frag if buff->len > AQ_CFG_RX_HDR_SIZE,
then all fragments are accounted for. And reusing the existing check to
prevent the overflow earlier in the code path.
This crash occurred in production with an Aquantia AQC113 10G NIC.
Stack trace from production environment:
```
RIP: 0010:skb_add_rx_frag_netmem+0x29/0xd0
Code: 90 f3 0f 1e fa 0f 1f 44 00 00 48 89 f8 41 89
ca 48 89 d7 48 63 ce 8b 90 c0 00 00 00 48 c1 e1 04 48 01 ca 48 03 90
c8 00 00 00 <48> 89 7a 30 44 89 52 3c 44 89 42 38 40 f6 c7 01 75 74 48
89 fa 83
RSP: 0018:ffffa9bec02a8d50 EFLAGS: 00010287
RAX: ffff925b22e80a00 RBX: ffff925ad38d2700 RCX:
fffffffe0a0c8000
RDX: ffff9258ea95bac0 RSI: ffff925ae0a0c800 RDI:
0000000000037a40
RBP: 0000000000000024 R08: 0000000000000000 R09:
0000000000000021
R10: 0000000000000848 R11: 0000000000000000 R12:
ffffa9bec02a8e24
R13: ffff925ad8615570 R14: 0000000000000000 R15:
ffff925b22e80a00
FS: 0000000000000000(0000)
GS:ffff925e47880000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: ffff9258ea95baf0 CR3: 0000000166022004 CR4:
0000000000f72ef0
PKRU: 55555554
Call Trace:
<IRQ>
aq_ring_rx_clean+0x175/0xe60 [atlantic]
? aq_ring_rx_clean+0x14d/0xe60 [atlantic]
? aq_ring_tx_clean+0xdf/0x190 [atlantic]
? kmem_cache_free+0x348/0x450
? aq_vec_poll+0x81/0x1d0 [atlantic]
? __napi_poll+0x28/0x1c0
? net_rx_action+0x337/0x420
```
Changes in v4:
- Add Fixes: tag to satisfy patch validation requirements.
Changes in v3:
- Fix by assuming there will be an extra frag if buff->len > AQ_CFG_RX_HDR_SIZE,
then all fragments are accounted for. |
| In the Linux kernel, the following vulnerability has been resolved:
idpf: fix possible vport_config NULL pointer deref in remove
Attempting to remove the driver will cause a crash in cases where
the vport failed to initialize. Following trace is from an instance where
the driver failed during an attempt to create a VF:
[ 1661.543624] idpf 0000:84:00.7: Device HW Reset initiated
[ 1722.923726] idpf 0000:84:00.7: Transaction timed-out (op:1 cookie:2900 vc_op:1 salt:29 timeout:60000ms)
[ 1723.353263] BUG: kernel NULL pointer dereference, address: 0000000000000028
...
[ 1723.358472] RIP: 0010:idpf_remove+0x11c/0x200 [idpf]
...
[ 1723.364973] Call Trace:
[ 1723.365475] <TASK>
[ 1723.365972] pci_device_remove+0x42/0xb0
[ 1723.366481] device_release_driver_internal+0x1a9/0x210
[ 1723.366987] pci_stop_bus_device+0x6d/0x90
[ 1723.367488] pci_stop_and_remove_bus_device+0x12/0x20
[ 1723.367971] pci_iov_remove_virtfn+0xbd/0x120
[ 1723.368309] sriov_disable+0x34/0xe0
[ 1723.368643] idpf_sriov_configure+0x58/0x140 [idpf]
[ 1723.368982] sriov_numvfs_store+0xda/0x1c0
Avoid the NULL pointer dereference by adding NULL pointer check for
vport_config[i], before freeing user_config.q_coalesce. |
| @vitejs/plugin-rs provides React Server Components (RSC) support for Vite. Prior to version 0.5.8, the `/__vite_rsc_findSourceMapURL` endpoint in `@vitejs/plugin-rsc` allows unauthenticated arbitrary file read during development mode. An attacker can read any file accessible to the Node.js process by sending a crafted HTTP request with a `file://` URL in the `filename` query parameter. Version 0.5.8 fixes the issue. |
| In the Linux kernel, the following vulnerability has been resolved:
usbnet: Prevents free active kevent
The root cause of this issue are:
1. When probing the usbnet device, executing usbnet_link_change(dev, 0, 0);
put the kevent work in global workqueue. However, the kevent has not yet
been scheduled when the usbnet device is unregistered. Therefore, executing
free_netdev() results in the "free active object (kevent)" error reported
here.
2. Another factor is that when calling usbnet_disconnect()->unregister_netdev(),
if the usbnet device is up, ndo_stop() is executed to cancel the kevent.
However, because the device is not up, ndo_stop() is not executed.
The solution to this problem is to cancel the kevent before executing
free_netdev(). |
| In the Linux kernel, the following vulnerability has been resolved:
ipv4: route: Prevent rt_bind_exception() from rebinding stale fnhe
The sit driver's packet transmission path calls: sit_tunnel_xmit() ->
update_or_create_fnhe(), which lead to fnhe_remove_oldest() being called
to delete entries exceeding FNHE_RECLAIM_DEPTH+random.
The race window is between fnhe_remove_oldest() selecting fnheX for
deletion and the subsequent kfree_rcu(). During this time, the
concurrent path's __mkroute_output() -> find_exception() can fetch the
soon-to-be-deleted fnheX, and rt_bind_exception() then binds it with a
new dst using a dst_hold(). When the original fnheX is freed via RCU,
the dst reference remains permanently leaked.
CPU 0 CPU 1
__mkroute_output()
find_exception() [fnheX]
update_or_create_fnhe()
fnhe_remove_oldest() [fnheX]
rt_bind_exception() [bind dst]
RCU callback [fnheX freed, dst leak]
This issue manifests as a device reference count leak and a warning in
dmesg when unregistering the net device:
unregister_netdevice: waiting for sitX to become free. Usage count = N
Ido Schimmel provided the simple test validation method [1].
The fix clears 'oldest->fnhe_daddr' before calling fnhe_flush_routes().
Since rt_bind_exception() checks this field, setting it to zero prevents
the stale fnhe from being reused and bound to a new dst just before it
is freed.
[1]
ip netns add ns1
ip -n ns1 link set dev lo up
ip -n ns1 address add 192.0.2.1/32 dev lo
ip -n ns1 link add name dummy1 up type dummy
ip -n ns1 route add 192.0.2.2/32 dev dummy1
ip -n ns1 link add name gretap1 up arp off type gretap \
local 192.0.2.1 remote 192.0.2.2
ip -n ns1 route add 198.51.0.0/16 dev gretap1
taskset -c 0 ip netns exec ns1 mausezahn gretap1 \
-A 198.51.100.1 -B 198.51.0.0/16 -t udp -p 1000 -c 0 -q &
taskset -c 2 ip netns exec ns1 mausezahn gretap1 \
-A 198.51.100.1 -B 198.51.0.0/16 -t udp -p 1000 -c 0 -q &
sleep 10
ip netns pids ns1 | xargs kill
ip netns del ns1 |
| In the Linux kernel, the following vulnerability has been resolved:
ice: fix PTP cleanup on driver removal in error path
Improve the cleanup on releasing PTP resources in error path.
The error case might happen either at the driver probe and PTP
feature initialization or on PTP restart (errors in reset handling, NVM
update etc). In both cases, calls to PF PTP cleanup (ice_ptp_cleanup_pf
function) and 'ps_lock' mutex deinitialization were missed.
Additionally, ptp clock was not unregistered in the latter case.
Keep PTP state as 'uninitialized' on init to distinguish between error
scenarios and to avoid resource release duplication at driver removal.
The consequence of missing ice_ptp_cleanup_pf call is the following call
trace dumped when ice_adapter object is freed (port list is not empty,
as it is required at this stage):
[ T93022] ------------[ cut here ]------------
[ T93022] WARNING: CPU: 10 PID: 93022 at
ice/ice_adapter.c:67 ice_adapter_put+0xef/0x100 [ice]
...
[ T93022] RIP: 0010:ice_adapter_put+0xef/0x100 [ice]
...
[ T93022] Call Trace:
[ T93022] <TASK>
[ T93022] ? ice_adapter_put+0xef/0x100 [ice
33d2647ad4f6d866d41eefff1806df37c68aef0c]
[ T93022] ? __warn.cold+0xb0/0x10e
[ T93022] ? ice_adapter_put+0xef/0x100 [ice
33d2647ad4f6d866d41eefff1806df37c68aef0c]
[ T93022] ? report_bug+0xd8/0x150
[ T93022] ? handle_bug+0xe9/0x110
[ T93022] ? exc_invalid_op+0x17/0x70
[ T93022] ? asm_exc_invalid_op+0x1a/0x20
[ T93022] ? ice_adapter_put+0xef/0x100 [ice
33d2647ad4f6d866d41eefff1806df37c68aef0c]
[ T93022] pci_device_remove+0x42/0xb0
[ T93022] device_release_driver_internal+0x19f/0x200
[ T93022] driver_detach+0x48/0x90
[ T93022] bus_remove_driver+0x70/0xf0
[ T93022] pci_unregister_driver+0x42/0xb0
[ T93022] ice_module_exit+0x10/0xdb0 [ice
33d2647ad4f6d866d41eefff1806df37c68aef0c]
...
[ T93022] ---[ end trace 0000000000000000 ]---
[ T93022] ice: module unloaded |
| Expr is an expression language and expression evaluation for Go. Prior to version 1.17.7, several builtin functions in Expr, including `flatten`, `min`, `max`, `mean`, and `median`, perform recursive traversal over user-provided data structures without enforcing a maximum recursion depth. If the evaluation environment contains deeply nested or cyclic data structures, these functions may recurse indefinitely until exceed the Go runtime stack limit. This results in a stack overflow panic, causing the host application to crash. While exploitability depends on whether an attacker can influence or inject cyclic or pathologically deep data into the
evaluation environment, this behavior represents a denial-of-service (DoS) risk and affects overall library robustness. Instead of returning a recoverable evaluation error, the process may terminate unexpectedly. In affected versions, evaluation of expressions that invoke certain builtin functions on untrusted or insufficiently validated data structures can lead to a process-level crash due to stack exhaustion. This issue is most relevant in scenarios where Expr is used to evaluate expressions against externally supplied or dynamically constructed environments; cyclic references (directly or indirectly) can be introduced into arrays, maps, or structs; and there are no application-level safeguards preventing deeply nested input data. In typical use cases with controlled, acyclic data, the issue may not manifest. However, when present, the resulting panic can be used to reliably crash the application, constituting a denial of service. The issue has been fixed in the v1.17.7 versions of Expr. The patch introduces a maximum recursion depth limit for affected builtin functions. When this limit is exceeded, evaluation aborts gracefully and returns a descriptive error instead of panicking. Additionally, the maximum depth can be customized by users via `builtin.MaxDepth`, allowing applications with legitimate deep structures to raise the limit in a controlled manner. Users are strongly encouraged to upgrade to the patched release, which includes both the recursion guard and comprehensive test coverage to prevent regressions. For users who cannot immediately upgrade, some mitigations are recommended. Ensure that evaluation environments cannot contain cyclic references, validate or sanitize externally supplied data structures before passing them to Expr, and/or wrap expression evaluation with panic recovery to prevent a full process crash (as a last-resort defensive measure). These workarounds reduce risk but do not fully eliminate the issue without the patch. |
| An out-of-bounds read vulnerability exists in the JPEGBITSCodec::InternalCode functionality of Grassroot DICOM 3.024. A specially crafted DICOM file can lead to an information leak. An attacker can provide a malicious file to trigger this vulnerability.The function `grayscale_convert` is called based of the value of the malicious DICOM file specifying the intended interpretation of the image pixel data |
| An out-of-bounds read vulnerability exists in the RLECodec::DecodeByStreams functionality of Grassroot DICOM 3.024. A specially crafted DICOM file can lead to leaking heap data. An attacker can provide a malicious file to trigger this vulnerability. |
| In the Linux kernel, the following vulnerability has been resolved:
ceph: fix crash in process_v2_sparse_read() for encrypted directories
The crash in process_v2_sparse_read() for fscrypt-encrypted directories
has been reported. Issue takes place for Ceph msgr2 protocol in secure
mode. It can be reproduced by the steps:
sudo mount -t ceph :/ /mnt/cephfs/ -o name=admin,fs=cephfs,ms_mode=secure
(1) mkdir /mnt/cephfs/fscrypt-test-3
(2) cp area_decrypted.tar /mnt/cephfs/fscrypt-test-3
(3) fscrypt encrypt --source=raw_key --key=./my.key /mnt/cephfs/fscrypt-test-3
(4) fscrypt lock /mnt/cephfs/fscrypt-test-3
(5) fscrypt unlock --key=my.key /mnt/cephfs/fscrypt-test-3
(6) cat /mnt/cephfs/fscrypt-test-3/area_decrypted.tar
(7) Issue has been triggered
[ 408.072247] ------------[ cut here ]------------
[ 408.072251] WARNING: CPU: 1 PID: 392 at net/ceph/messenger_v2.c:865
ceph_con_v2_try_read+0x4b39/0x72f0
[ 408.072267] Modules linked in: intel_rapl_msr intel_rapl_common
intel_uncore_frequency_common intel_pmc_core pmt_telemetry pmt_discovery
pmt_class intel_pmc_ssram_telemetry intel_vsec kvm_intel joydev kvm irqbypass
polyval_clmulni ghash_clmulni_intel aesni_intel rapl input_leds psmouse
serio_raw i2c_piix4 vga16fb bochs vgastate i2c_smbus floppy mac_hid qemu_fw_cfg
pata_acpi sch_fq_codel rbd msr parport_pc ppdev lp parport efi_pstore
[ 408.072304] CPU: 1 UID: 0 PID: 392 Comm: kworker/1:3 Not tainted 6.17.0-rc7+
[ 408.072307] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS
1.17.0-5.fc42 04/01/2014
[ 408.072310] Workqueue: ceph-msgr ceph_con_workfn
[ 408.072314] RIP: 0010:ceph_con_v2_try_read+0x4b39/0x72f0
[ 408.072317] Code: c7 c1 20 f0 d4 ae 50 31 d2 48 c7 c6 60 27 d5 ae 48 c7 c7 f8
8e 6f b0 68 60 38 d5 ae e8 00 47 61 fe 48 83 c4 18 e9 ac fc ff ff <0f> 0b e9 06
fe ff ff 4c 8b 9d 98 fd ff ff 0f 84 64 e7 ff ff 89 85
[ 408.072319] RSP: 0018:ffff88811c3e7a30 EFLAGS: 00010246
[ 408.072322] RAX: ffffed1024874c6f RBX: ffffea00042c2b40 RCX: 0000000000000f38
[ 408.072324] RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000000
[ 408.072325] RBP: ffff88811c3e7ca8 R08: 0000000000000000 R09: 00000000000000c8
[ 408.072326] R10: 00000000000000c8 R11: 0000000000000000 R12: 00000000000000c8
[ 408.072327] R13: dffffc0000000000 R14: ffff8881243a6030 R15: 0000000000003000
[ 408.072329] FS: 0000000000000000(0000) GS:ffff88823eadf000(0000)
knlGS:0000000000000000
[ 408.072331] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 408.072332] CR2: 000000c0003c6000 CR3: 000000010c106005 CR4: 0000000000772ef0
[ 408.072336] PKRU: 55555554
[ 408.072337] Call Trace:
[ 408.072338] <TASK>
[ 408.072340] ? sched_clock_noinstr+0x9/0x10
[ 408.072344] ? __pfx_ceph_con_v2_try_read+0x10/0x10
[ 408.072347] ? _raw_spin_unlock+0xe/0x40
[ 408.072349] ? finish_task_switch.isra.0+0x15d/0x830
[ 408.072353] ? __kasan_check_write+0x14/0x30
[ 408.072357] ? mutex_lock+0x84/0xe0
[ 408.072359] ? __pfx_mutex_lock+0x10/0x10
[ 408.072361] ceph_con_workfn+0x27e/0x10e0
[ 408.072364] ? metric_delayed_work+0x311/0x2c50
[ 408.072367] process_one_work+0x611/0xe20
[ 408.072371] ? __kasan_check_write+0x14/0x30
[ 408.072373] worker_thread+0x7e3/0x1580
[ 408.072375] ? __pfx__raw_spin_lock_irqsave+0x10/0x10
[ 408.072378] ? __pfx_worker_thread+0x10/0x10
[ 408.072381] kthread+0x381/0x7a0
[ 408.072383] ? __pfx__raw_spin_lock_irq+0x10/0x10
[ 408.072385] ? __pfx_kthread+0x10/0x10
[ 408.072387] ? __kasan_check_write+0x14/0x30
[ 408.072389] ? recalc_sigpending+0x160/0x220
[ 408.072392] ? _raw_spin_unlock_irq+0xe/0x50
[ 408.072394] ? calculate_sigpending+0x78/0xb0
[ 408.072395] ? __pfx_kthread+0x10/0x10
[ 408.072397] ret_from_fork+0x2b6/0x380
[ 408.072400] ? __pfx_kthread+0x10/0x10
[ 408.072402] ret_from_fork_asm+0x1a/0x30
[ 408.072406] </TASK>
[ 408.072407] ---[ end trace 0000000000000000 ]---
[ 408.072418] Oops: general protection fault, probably for non-canonical
address 0xdffffc00000000
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
NFS: Check the TLS certificate fields in nfs_match_client()
If the TLS security policy is of type RPC_XPRTSEC_TLS_X509, then the
cert_serial and privkey_serial fields need to match as well since they
define the client's identity, as presented to the server. |