| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| An issue in the cms_rest.php component of SIGB PMB v8.0.1.14 allows attackers to execute arbitrary code via unserializing an arbitrary file. |
| SIGB PMB v8.0.1.14 was discovered to contain multiple SQL injection vulnerabilities in the /opac_css/ajax_selector.php component via the id and datas parameters. |
| Primakon Pi Portal 1.0.18 REST /api/v2/user/register endpoint suffers from a Broken Access Control vulnerability. The endpoint fails to implement any authorization checks, allowing unauthenticated attackers to perform POST requests to register new user accounts in the application's local database. This bypasses the intended security architecture, which relies on an external Identity Provider for initial user registration and assumes that internal user creation is an administrative-only function. This vector can also be chained with other vulnerabilities for privilege escalation and complete compromise of application. This specific request can be used to also enumerate already registered user accounts, aiding in social engineering or further targeted attacks. |
| @misskey-dev/summaly is a tool for getting a summary of a web page. Starting in version 3.0.1 and prior to version 5.2.1, a logic error in the main `summaly` function causes the `allowRedirects` option to never be passed to any plugins, and as a result, isn't enforced. Misskey will follow redirects, despite explicitly requesting not to. Version 5.2.1 contains a patch for the issue. |
| The Primakon Pi Portal 1.0.18 /api/V2/pp_users?email endpoint is used for user data filtering but lacks proper server-side validation against the authenticated session. By manipulating the email parameter to an arbitrary value (e.g., otheruser@user.com), an attacker can assume the session and gain full access to the target user's data and privileges. Also, if the email parameter is left blank, the application defaults to the first user in the list, who is typically the application administrator, resulting in an immediate Privilege Escalation to the highest level. |
| A flaw was found in` JwtValidator.resolvePublicKey` in JBoss EAP, where the validator checks jku and sends a HTTP request. During this process, no whitelisting or other filtering behavior is performed on the destination URL address, which may result in a server-side request forgery (SSRF) vulnerability. |
| In the Linux kernel, the following vulnerability has been resolved:
f2fs: compress: fix UAF of f2fs_inode_info in f2fs_free_dic
The decompress_io_ctx may be released asynchronously after
I/O completion. If this file is deleted immediately after read,
and the kworker of processing post_read_wq has not been executed yet
due to high workloads, It is possible that the inode(f2fs_inode_info)
is evicted and freed before it is used f2fs_free_dic.
The UAF case as below:
Thread A Thread B
- f2fs_decompress_end_io
- f2fs_put_dic
- queue_work
add free_dic work to post_read_wq
- do_unlink
- iput
- evict
- call_rcu
This file is deleted after read.
Thread C kworker to process post_read_wq
- rcu_do_batch
- f2fs_free_inode
- kmem_cache_free
inode is freed by rcu
- process_scheduled_works
- f2fs_late_free_dic
- f2fs_free_dic
- f2fs_release_decomp_mem
read (dic->inode)->i_compress_algorithm
This patch store compress_algorithm and sbi in dic to avoid inode UAF.
In addition, the previous solution is deprecated in [1] may cause system hang.
[1] https://lore.kernel.org/all/c36ab955-c8db-4a8b-a9d0-f07b5f426c3f@kernel.org |
| A Buffer Copy without Checking Size of Input vulnerability in the
Session Initialization Protocol (SIP) ALG of Juniper Networks Junos OS on MX Series and SRX Series allows an unauthenticated, network-based attacker to cause a Denial of Service (DoS).
When memory utilization is high, and specific SIP packets are received, flowd/mspmand crashes. While the system recovers automatically, the disruption can significantly impact service stability. Continuous receipt of these specific SIP packets, while high utilization is present, will cause a sustained DoS condition. The utilization is outside the attackers control, so they would not be able to deterministically exploit this.
This issue affects Junos OS on SRX Series and MX Series:
* All versions before 22.4R3-S7,
* from 23.2 before 23.2R2-S4,
* from 23.4 before 23.4R2-S5,
* from 24.2 before 24.2R2. |
| A flaw was found in GIMP. An integer overflow vulnerability exists in the GIMP "Despeckle" plug-in. The issue occurs due to unchecked multiplication of image dimensions, such as width, height, and bytes-per-pixel (img_bpp), which can result in allocating insufficient memory and subsequently performing out-of-bounds writes. This issue could lead to heap corruption, a potential denial of service (DoS), or arbitrary code execution in certain scenarios. |
| PyTorch is a Python package that provides tensor computation with strong GPU acceleration and deep neural networks built on a tape-based autograd system. In version 2.5.1 and prior, a Remote Command Execution (RCE) vulnerability exists in PyTorch when loading a model using torch.load with weights_only=True. This issue has been patched in version 2.6.0. |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: MGMT: fix crash in set_mesh_sync and set_mesh_complete
There is a BUG: KASAN: stack-out-of-bounds in set_mesh_sync due to
memcpy from badly declared on-stack flexible array.
Another crash is in set_mesh_complete() due to double list_del via
mgmt_pending_valid + mgmt_pending_remove.
Use DEFINE_FLEX to declare the flexible array right, and don't memcpy
outside bounds.
As mgmt_pending_valid removes the cmd from list, use mgmt_pending_free,
and also report status on error. |
| In the Linux kernel, the following vulnerability has been resolved:
nfsd: fix refcount leak in nfsd_set_fh_dentry()
nfsd exports a "pseudo root filesystem" which is used by NFSv4 to find
the various exported filesystems using LOOKUP requests from a known root
filehandle. NFSv3 uses the MOUNT protocol to find those exported
filesystems and so is not given access to the pseudo root filesystem.
If a v3 (or v2) client uses a filehandle from that filesystem,
nfsd_set_fh_dentry() will report an error, but still stores the export
in "struct svc_fh" even though it also drops the reference (exp_put()).
This means that when fh_put() is called an extra reference will be dropped
which can lead to use-after-free and possible denial of service.
Normal NFS usage will not provide a pseudo-root filehandle to a v3
client. This bug can only be triggered by the client synthesising an
incorrect filehandle.
To fix this we move the assignments to the svc_fh later, after all
possible error cases have been detected. |
| In the Linux kernel, the following vulnerability has been resolved:
ACPI: video: Fix use-after-free in acpi_video_switch_brightness()
The switch_brightness_work delayed work accesses device->brightness
and device->backlight, freed by acpi_video_dev_unregister_backlight()
during device removal.
If the work executes after acpi_video_bus_unregister_backlight()
frees these resources, it causes a use-after-free when
acpi_video_switch_brightness() dereferences device->brightness or
device->backlight.
Fix this by calling cancel_delayed_work_sync() for each device's
switch_brightness_work in acpi_video_bus_remove_notify_handler()
after removing the notify handler that queues the work. This ensures
the work completes before the memory is freed.
[ rjw: Changelog edit ] |
| In the Linux kernel, the following vulnerability has been resolved:
Revert "NFSD: Remove the cap on number of operations per NFSv4 COMPOUND"
I've found that pynfs COMP6 now leaves the connection or lease in a
strange state, which causes CLOSE9 to hang indefinitely. I've dug
into it a little, but I haven't been able to root-cause it yet.
However, I bisected to commit 48aab1606fa8 ("NFSD: Remove the cap on
number of operations per NFSv4 COMPOUND").
Tianshuo Han also reports a potential vulnerability when decoding
an NFSv4 COMPOUND. An attacker can place an arbitrarily large op
count in the COMPOUND header, which results in:
[ 51.410584] nfsd: vmalloc error: size 1209533382144, exceeds total
pages, mode:0xdc0(GFP_KERNEL|__GFP_ZERO),
nodemask=(null),cpuset=/,mems_allowed=0
when NFSD attempts to allocate the COMPOUND op array.
Let's restore the operation-per-COMPOUND limit, but increased to 200
for now. |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: fix memory leak of qgroup_list in btrfs_add_qgroup_relation
When btrfs_add_qgroup_relation() is called with invalid qgroup levels
(src >= dst), the function returns -EINVAL directly without freeing the
preallocated qgroup_list structure passed by the caller. This causes a
memory leak because the caller unconditionally sets the pointer to NULL
after the call, preventing any cleanup.
The issue occurs because the level validation check happens before the
mutex is acquired and before any error handling path that would free
the prealloc pointer. On this early return, the cleanup code at the
'out' label (which includes kfree(prealloc)) is never reached.
In btrfs_ioctl_qgroup_assign(), the code pattern is:
prealloc = kzalloc(sizeof(*prealloc), GFP_KERNEL);
ret = btrfs_add_qgroup_relation(trans, sa->src, sa->dst, prealloc);
prealloc = NULL; // Always set to NULL regardless of return value
...
kfree(prealloc); // This becomes kfree(NULL), does nothing
When the level check fails, 'prealloc' is never freed by either the
callee or the caller, resulting in a 64-byte memory leak per failed
operation. This can be triggered repeatedly by an unprivileged user
with access to a writable btrfs mount, potentially exhausting kernel
memory.
Fix this by freeing prealloc before the early return, ensuring prealloc
is always freed on all error paths. |
| In the Linux kernel, the following vulnerability has been resolved:
media: iris: fix module removal if firmware download failed
Fix remove if firmware failed to load:
qcom-iris aa00000.video-codec: Direct firmware load for qcom/vpu/vpu33_p4.mbn failed with error -2
qcom-iris aa00000.video-codec: firmware download failed
qcom-iris aa00000.video-codec: core init failed
then:
$ echo aa00000.video-codec > /sys/bus/platform/drivers/qcom-iris/unbind
Triggers:
genpd genpd:1:aa00000.video-codec: Runtime PM usage count underflow!
------------[ cut here ]------------
video_cc_mvs0_clk already disabled
WARNING: drivers/clk/clk.c:1206 at clk_core_disable+0xa4/0xac, CPU#1: sh/542
<snip>
pc : clk_core_disable+0xa4/0xac
lr : clk_core_disable+0xa4/0xac
<snip>
Call trace:
clk_core_disable+0xa4/0xac (P)
clk_disable+0x30/0x4c
iris_disable_unprepare_clock+0x20/0x48 [qcom_iris]
iris_vpu_power_off_hw+0x48/0x58 [qcom_iris]
iris_vpu33_power_off_hardware+0x44/0x230 [qcom_iris]
iris_vpu_power_off+0x34/0x84 [qcom_iris]
iris_core_deinit+0x44/0xc8 [qcom_iris]
iris_remove+0x20/0x48 [qcom_iris]
platform_remove+0x20/0x30
device_remove+0x4c/0x80
<snip>
---[ end trace 0000000000000000 ]---
------------[ cut here ]------------
video_cc_mvs0_clk already unprepared
WARNING: drivers/clk/clk.c:1065 at clk_core_unprepare+0xf0/0x110, CPU#2: sh/542
<snip>
pc : clk_core_unprepare+0xf0/0x110
lr : clk_core_unprepare+0xf0/0x110
<snip>
Call trace:
clk_core_unprepare+0xf0/0x110 (P)
clk_unprepare+0x2c/0x44
iris_disable_unprepare_clock+0x28/0x48 [qcom_iris]
iris_vpu_power_off_hw+0x48/0x58 [qcom_iris]
iris_vpu33_power_off_hardware+0x44/0x230 [qcom_iris]
iris_vpu_power_off+0x34/0x84 [qcom_iris]
iris_core_deinit+0x44/0xc8 [qcom_iris]
iris_remove+0x20/0x48 [qcom_iris]
platform_remove+0x20/0x30
device_remove+0x4c/0x80
<snip>
---[ end trace 0000000000000000 ]---
genpd genpd:0:aa00000.video-codec: Runtime PM usage count underflow!
------------[ cut here ]------------
gcc_video_axi0_clk already disabled
WARNING: drivers/clk/clk.c:1206 at clk_core_disable+0xa4/0xac, CPU#4: sh/542
<snip>
pc : clk_core_disable+0xa4/0xac
lr : clk_core_disable+0xa4/0xac
<snip>
Call trace:
clk_core_disable+0xa4/0xac (P)
clk_disable+0x30/0x4c
iris_disable_unprepare_clock+0x20/0x48 [qcom_iris]
iris_vpu33_power_off_controller+0x17c/0x428 [qcom_iris]
iris_vpu_power_off+0x48/0x84 [qcom_iris]
iris_core_deinit+0x44/0xc8 [qcom_iris]
iris_remove+0x20/0x48 [qcom_iris]
platform_remove+0x20/0x30
device_remove+0x4c/0x80
<snip>
------------[ cut here ]------------
gcc_video_axi0_clk already unprepared
WARNING: drivers/clk/clk.c:1065 at clk_core_unprepare+0xf0/0x110, CPU#4: sh/542
<snip>
pc : clk_core_unprepare+0xf0/0x110
lr : clk_core_unprepare+0xf0/0x110
<snip>
Call trace:
clk_core_unprepare+0xf0/0x110 (P)
clk_unprepare+0x2c/0x44
iris_disable_unprepare_clock+0x28/0x48 [qcom_iris]
iris_vpu33_power_off_controller+0x17c/0x428 [qcom_iris]
iris_vpu_power_off+0x48/0x84 [qcom_iris]
iris_core_deinit+0x44/0xc8 [qcom_iris]
iris_remove+0x20/0x48 [qcom_iris]
platform_remove+0x20/0x30
device_remove+0x4c/0x80
<snip>
---[ end trace 0000000000000000 ]---
Skip deinit if initialization never succeeded. |
| In the Linux kernel, the following vulnerability has been resolved:
media: v4l2-subdev: Fix alloc failure check in v4l2_subdev_call_state_try()
v4l2_subdev_call_state_try() macro allocates a subdev state with
__v4l2_subdev_state_alloc(), but does not check the returned value. If
__v4l2_subdev_state_alloc fails, it returns an ERR_PTR, and that would
cause v4l2_subdev_call_state_try() to crash.
Add proper error handling to v4l2_subdev_call_state_try(). |
| In the Linux kernel, the following vulnerability has been resolved:
netfilter: nft_objref: validate objref and objrefmap expressions
Referencing a synproxy stateful object from OUTPUT hook causes kernel
crash due to infinite recursive calls:
BUG: TASK stack guard page was hit at 000000008bda5b8c (stack is 000000003ab1c4a5..00000000494d8b12)
[...]
Call Trace:
__find_rr_leaf+0x99/0x230
fib6_table_lookup+0x13b/0x2d0
ip6_pol_route+0xa4/0x400
fib6_rule_lookup+0x156/0x240
ip6_route_output_flags+0xc6/0x150
__nf_ip6_route+0x23/0x50
synproxy_send_tcp_ipv6+0x106/0x200
synproxy_send_client_synack_ipv6+0x1aa/0x1f0
nft_synproxy_do_eval+0x263/0x310
nft_do_chain+0x5a8/0x5f0 [nf_tables
nft_do_chain_inet+0x98/0x110
nf_hook_slow+0x43/0xc0
__ip6_local_out+0xf0/0x170
ip6_local_out+0x17/0x70
synproxy_send_tcp_ipv6+0x1a2/0x200
synproxy_send_client_synack_ipv6+0x1aa/0x1f0
[...]
Implement objref and objrefmap expression validate functions.
Currently, only NFT_OBJECT_SYNPROXY object type requires validation.
This will also handle a jump to a chain using a synproxy object from the
OUTPUT hook.
Now when trying to reference a synproxy object in the OUTPUT hook, nft
will produce the following error:
synproxy_crash.nft: Error: Could not process rule: Operation not supported
synproxy name mysynproxy
^^^^^^^^^^^^^^^^^^^^^^^^ |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: avoid potential out-of-bounds in btrfs_encode_fh()
The function btrfs_encode_fh() does not properly account for the three
cases it handles.
Before writing to the file handle (fh), the function only returns to the
user BTRFS_FID_SIZE_NON_CONNECTABLE (5 dwords, 20 bytes) or
BTRFS_FID_SIZE_CONNECTABLE (8 dwords, 32 bytes).
However, when a parent exists and the root ID of the parent and the
inode are different, the function writes BTRFS_FID_SIZE_CONNECTABLE_ROOT
(10 dwords, 40 bytes).
If *max_len is not large enough, this write goes out of bounds because
BTRFS_FID_SIZE_CONNECTABLE_ROOT is greater than
BTRFS_FID_SIZE_CONNECTABLE originally returned.
This results in an 8-byte out-of-bounds write at
fid->parent_root_objectid = parent_root_id.
A previous attempt to fix this issue was made but was lost.
https://lore.kernel.org/all/4CADAEEC020000780001B32C@vpn.id2.novell.com/
Although this issue does not seem to be easily triggerable, it is a
potential memory corruption bug that should be fixed. This patch
resolves the issue by ensuring the function returns the appropriate size
for all three cases and validates that *max_len is large enough before
writing any data. |
| In the Linux kernel, the following vulnerability has been resolved:
sctp: Fix MAC comparison to be constant-time
To prevent timing attacks, MACs need to be compared in constant time.
Use the appropriate helper function for this. |