| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| Concurrent execution using shared resource with improper synchronization ('race condition') in Windows Win32K - GRFX allows an authorized attacker to execute code locally. |
| Use after free in Windows BitLocker allows an authorized attacker to elevate privileges locally. |
| Concurrent execution using shared resource with improper synchronization ('race condition') in Graphics Kernel allows an authorized attacker to elevate privileges locally. |
| Use after free in Microsoft Office PowerPoint allows an unauthorized attacker to execute code locally. |
| Free of memory not on the heap in Microsoft Office allows an unauthorized attacker to execute code locally. |
| Use after free in Microsoft Office Excel allows an unauthorized attacker to execute code locally. |
| Use after free in Microsoft Office Excel allows an unauthorized attacker to execute code locally. |
| Use after free in Microsoft Office Excel allows an unauthorized attacker to execute code locally. |
| Use After Free vulnerability in Silicon Labs Bluetooth SDK on 32 bit, ARM may allow an attacker with precise timing capabilities to intercept a small number of packets intended for a recipient that has left the network.This issue affects Silabs Bluetooth SDK: through 8.0.0. |
| In the Linux kernel, the following vulnerability has been resolved:
bpf: Defer work in bpf_timer_cancel_and_free
Currently, the same case as previous patch (two timer callbacks trying
to cancel each other) can be invoked through bpf_map_update_elem as
well, or more precisely, freeing map elements containing timers. Since
this relies on hrtimer_cancel as well, it is prone to the same deadlock
situation as the previous patch.
It would be sufficient to use hrtimer_try_to_cancel to fix this problem,
as the timer cannot be enqueued after async_cancel_and_free. Once
async_cancel_and_free has been done, the timer must be reinitialized
before it can be armed again. The callback running in parallel trying to
arm the timer will fail, and freeing bpf_hrtimer without waiting is
sufficient (given kfree_rcu), and bpf_timer_cb will return
HRTIMER_NORESTART, preventing the timer from being rearmed again.
However, there exists a UAF scenario where the callback arms the timer
before entering this function, such that if cancellation fails (due to
timer callback invoking this routine, or the target timer callback
running concurrently). In such a case, if the timer expiration is
significantly far in the future, the RCU grace period expiration
happening before it will free the bpf_hrtimer state and along with it
the struct hrtimer, that is enqueued.
Hence, it is clear cancellation needs to occur after
async_cancel_and_free, and yet it cannot be done inline due to deadlock
issues. We thus modify bpf_timer_cancel_and_free to defer work to the
global workqueue, adding a work_struct alongside rcu_head (both used at
_different_ points of time, so can share space).
Update existing code comments to reflect the new state of affairs. |
| In the Linux kernel, the following vulnerability has been resolved:
misc: fastrpc: avoid double fput() on failed usercopy
If the copy back to userland fails for the FASTRPC_IOCTL_ALLOC_DMA_BUFF
ioctl(), we shouldn't assume that 'buf->dmabuf' is still valid. In fact,
dma_buf_fd() called fd_install() before, i.e. "consumed" one reference,
leaving us with none.
Calling dma_buf_put() will therefore put a reference we no longer own,
leading to a valid file descritor table entry for an already released
'file' object which is a straight use-after-free.
Simply avoid calling dma_buf_put() and rely on the process exit code to
do the necessary cleanup, if needed, i.e. if the file descriptor is
still valid. |
| Memory corruption while encoding the image data. |
| Memory corruption while processing config_dev IOCTL when camera kernel driver drops its reference to CPU buffers. |
| Memory corruption while processing message in guest VM. |
| Memory corruption while handling repeated memory unmap requests from guest VM. |
| Memory corruption due to double free when multiple threads race to set the timestamp store. |
| Use after free in Dawn in Google Chrome prior to 140.0.7339.185 allowed a remote attacker to potentially exploit heap corruption via a crafted HTML page. (Chromium security severity: High) |
| Use after free in WebRTC in Google Chrome prior to 140.0.7339.185 allowed a remote attacker to potentially exploit heap corruption via a crafted HTML page. (Chromium security severity: High) |
| A vulnerability was found in libssh, where an uninitialized variable exists under certain conditions in the privatekey_from_file() function. This flaw can be triggered if the file specified by the filename doesn't exist and may lead to possible signing failures or heap corruption. |
| In the Linux kernel, the following vulnerability has been resolved:
staging: rtl8712: fix use-after-free in rtl8712_dl_fw
Syzbot reported use-after-free in rtl8712_dl_fw(). The problem was in
race condition between r871xu_dev_remove() ->ndo_open() callback.
It's easy to see from crash log, that driver accesses released firmware
in ->ndo_open() callback. It may happen, since driver was releasing
firmware _before_ unregistering netdev. Fix it by moving
unregister_netdev() before cleaning up resources.
Call Trace:
...
rtl871x_open_fw drivers/staging/rtl8712/hal_init.c:83 [inline]
rtl8712_dl_fw+0xd95/0xe10 drivers/staging/rtl8712/hal_init.c:170
rtl8712_hal_init drivers/staging/rtl8712/hal_init.c:330 [inline]
rtl871x_hal_init+0xae/0x180 drivers/staging/rtl8712/hal_init.c:394
netdev_open+0xe6/0x6c0 drivers/staging/rtl8712/os_intfs.c:380
__dev_open+0x2bc/0x4d0 net/core/dev.c:1484
Freed by task 1306:
...
release_firmware+0x1b/0x30 drivers/base/firmware_loader/main.c:1053
r871xu_dev_remove+0xcc/0x2c0 drivers/staging/rtl8712/usb_intf.c:599
usb_unbind_interface+0x1d8/0x8d0 drivers/usb/core/driver.c:458 |