Search Results (15919 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2021-47263 1 Linux 1 Linux Kernel 2025-05-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: gpio: wcd934x: Fix shift-out-of-bounds error bit-mask for pins 0 to 4 is BIT(0) to BIT(4) however we ended up with BIT(n - 1) which is not right, and this was caught by below usban check UBSAN: shift-out-of-bounds in drivers/gpio/gpio-wcd934x.c:34:14
CVE-2021-47262 1 Linux 1 Linux Kernel 2025-05-04 7.1 High
In the Linux kernel, the following vulnerability has been resolved: KVM: x86: Ensure liveliness of nested VM-Enter fail tracepoint message Use the __string() machinery provided by the tracing subystem to make a copy of the string literals consumed by the "nested VM-Enter failed" tracepoint. A complete copy is necessary to ensure that the tracepoint can't outlive the data/memory it consumes and deference stale memory. Because the tracepoint itself is defined by kvm, if kvm-intel and/or kvm-amd are built as modules, the memory holding the string literals defined by the vendor modules will be freed when the module is unloaded, whereas the tracepoint and its data in the ring buffer will live until kvm is unloaded (or "indefinitely" if kvm is built-in). This bug has existed since the tracepoint was added, but was recently exposed by a new check in tracing to detect exactly this type of bug. fmt: '%s%s ' current_buffer: ' vmx_dirty_log_t-140127 [003] .... kvm_nested_vmenter_failed: ' WARNING: CPU: 3 PID: 140134 at kernel/trace/trace.c:3759 trace_check_vprintf+0x3be/0x3e0 CPU: 3 PID: 140134 Comm: less Not tainted 5.13.0-rc1-ce2e73ce600a-req #184 Hardware name: ASUS Q87M-E/Q87M-E, BIOS 1102 03/03/2014 RIP: 0010:trace_check_vprintf+0x3be/0x3e0 Code: <0f> 0b 44 8b 4c 24 1c e9 a9 fe ff ff c6 44 02 ff 00 49 8b 97 b0 20 RSP: 0018:ffffa895cc37bcb0 EFLAGS: 00010282 RAX: 0000000000000000 RBX: ffffa895cc37bd08 RCX: 0000000000000027 RDX: 0000000000000027 RSI: 00000000ffffdfff RDI: ffff9766cfad74f8 RBP: ffffffffc0a041d4 R08: ffff9766cfad74f0 R09: ffffa895cc37bad8 R10: 0000000000000001 R11: 0000000000000001 R12: ffffffffc0a041d4 R13: ffffffffc0f4dba8 R14: 0000000000000000 R15: ffff976409f2c000 FS: 00007f92fa200740(0000) GS:ffff9766cfac0000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000559bd11b0000 CR3: 000000019fbaa002 CR4: 00000000001726e0 Call Trace: trace_event_printf+0x5e/0x80 trace_raw_output_kvm_nested_vmenter_failed+0x3a/0x60 [kvm] print_trace_line+0x1dd/0x4e0 s_show+0x45/0x150 seq_read_iter+0x2d5/0x4c0 seq_read+0x106/0x150 vfs_read+0x98/0x180 ksys_read+0x5f/0xe0 do_syscall_64+0x40/0xb0 entry_SYSCALL_64_after_hwframe+0x44/0xae
CVE-2021-47261 1 Linux 1 Linux Kernel 2025-05-04 7.8 High
In the Linux kernel, the following vulnerability has been resolved: IB/mlx5: Fix initializing CQ fragments buffer The function init_cq_frag_buf() can be called to initialize the current CQ fragments buffer cq->buf, or the temporary cq->resize_buf that is filled during CQ resize operation. However, the offending commit started to use function get_cqe() for getting the CQEs, the issue with this change is that get_cqe() always returns CQEs from cq->buf, which leads us to initialize the wrong buffer, and in case of enlarging the CQ we try to access elements beyond the size of the current cq->buf and eventually hit a kernel panic. [exception RIP: init_cq_frag_buf+103] [ffff9f799ddcbcd8] mlx5_ib_resize_cq at ffffffffc0835d60 [mlx5_ib] [ffff9f799ddcbdb0] ib_resize_cq at ffffffffc05270df [ib_core] [ffff9f799ddcbdc0] llt_rdma_setup_qp at ffffffffc0a6a712 [llt] [ffff9f799ddcbe10] llt_rdma_cc_event_action at ffffffffc0a6b411 [llt] [ffff9f799ddcbe98] llt_rdma_client_conn_thread at ffffffffc0a6bb75 [llt] [ffff9f799ddcbec8] kthread at ffffffffa66c5da1 [ffff9f799ddcbf50] ret_from_fork_nospec_begin at ffffffffa6d95ddd Fix it by getting the needed CQE by calling mlx5_frag_buf_get_wqe() that takes the correct source buffer as a parameter.
CVE-2021-47260 1 Linux 1 Linux Kernel 2025-05-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: NFS: Fix a potential NULL dereference in nfs_get_client() None of the callers are expecting NULL returns from nfs_get_client() so this code will lead to an Oops. It's better to return an error pointer. I expect that this is dead code so hopefully no one is affected.
CVE-2021-47259 1 Linux 1 Linux Kernel 2025-05-04 7.5 High
In the Linux kernel, the following vulnerability has been resolved: NFS: Fix use-after-free in nfs4_init_client() KASAN reports a use-after-free when attempting to mount two different exports through two different NICs that belong to the same server. Olga was able to hit this with kernels starting somewhere between 5.7 and 5.10, but I traced the patch that introduced the clear_bit() call to 4.13. So something must have changed in the refcounting of the clp pointer to make this call to nfs_put_client() the very last one.
CVE-2021-47256 1 Linux 1 Linux Kernel 2025-05-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: mm/memory-failure: make sure wait for page writeback in memory_failure Our syzkaller trigger the "BUG_ON(!list_empty(&inode->i_wb_list))" in clear_inode: kernel BUG at fs/inode.c:519! Internal error: Oops - BUG: 0 [#1] SMP Modules linked in: Process syz-executor.0 (pid: 249, stack limit = 0x00000000a12409d7) CPU: 1 PID: 249 Comm: syz-executor.0 Not tainted 4.19.95 Hardware name: linux,dummy-virt (DT) pstate: 80000005 (Nzcv daif -PAN -UAO) pc : clear_inode+0x280/0x2a8 lr : clear_inode+0x280/0x2a8 Call trace: clear_inode+0x280/0x2a8 ext4_clear_inode+0x38/0xe8 ext4_free_inode+0x130/0xc68 ext4_evict_inode+0xb20/0xcb8 evict+0x1a8/0x3c0 iput+0x344/0x460 do_unlinkat+0x260/0x410 __arm64_sys_unlinkat+0x6c/0xc0 el0_svc_common+0xdc/0x3b0 el0_svc_handler+0xf8/0x160 el0_svc+0x10/0x218 Kernel panic - not syncing: Fatal exception A crash dump of this problem show that someone called __munlock_pagevec to clear page LRU without lock_page: do_mmap -> mmap_region -> do_munmap -> munlock_vma_pages_range -> __munlock_pagevec. As a result memory_failure will call identify_page_state without wait_on_page_writeback. And after truncate_error_page clear the mapping of this page. end_page_writeback won't call sb_clear_inode_writeback to clear inode->i_wb_list. That will trigger BUG_ON in clear_inode! Fix it by checking PageWriteback too to help determine should we skip wait_on_page_writeback.
CVE-2021-47255 1 Linux 1 Linux Kernel 2025-05-04 7.1 High
In the Linux kernel, the following vulnerability has been resolved: kvm: LAPIC: Restore guard to prevent illegal APIC register access Per the SDM, "any access that touches bytes 4 through 15 of an APIC register may cause undefined behavior and must not be executed." Worse, such an access in kvm_lapic_reg_read can result in a leak of kernel stack contents. Prior to commit 01402cf81051 ("kvm: LAPIC: write down valid APIC registers"), such an access was explicitly disallowed. Restore the guard that was removed in that commit.
CVE-2021-47252 1 Linux 1 Linux Kernel 2025-05-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: batman-adv: Avoid WARN_ON timing related checks The soft/batadv interface for a queued OGM can be changed during the time the OGM was queued for transmission and when the OGM is actually transmitted by the worker. But WARN_ON must be used to denote kernel bugs and not to print simple warnings. A warning can simply be printed using pr_warn.
CVE-2021-47251 1 Linux 1 Linux Kernel 2025-05-04 7.8 High
In the Linux kernel, the following vulnerability has been resolved: mac80211: fix skb length check in ieee80211_scan_rx() Replace hard-coded compile-time constants for header length check with dynamic determination based on the frame type. Otherwise, we hit a validation WARN_ON in cfg80211 later. [style fixes, reword commit message]
CVE-2021-47250 1 Linux 1 Linux Kernel 2025-05-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: net: ipv4: fix memory leak in netlbl_cipsov4_add_std Reported by syzkaller: BUG: memory leak unreferenced object 0xffff888105df7000 (size 64): comm "syz-executor842", pid 360, jiffies 4294824824 (age 22.546s) hex dump (first 32 bytes): 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ backtrace: [<00000000e67ed558>] kmalloc include/linux/slab.h:590 [inline] [<00000000e67ed558>] kzalloc include/linux/slab.h:720 [inline] [<00000000e67ed558>] netlbl_cipsov4_add_std net/netlabel/netlabel_cipso_v4.c:145 [inline] [<00000000e67ed558>] netlbl_cipsov4_add+0x390/0x2340 net/netlabel/netlabel_cipso_v4.c:416 [<0000000006040154>] genl_family_rcv_msg_doit.isra.0+0x20e/0x320 net/netlink/genetlink.c:739 [<00000000204d7a1c>] genl_family_rcv_msg net/netlink/genetlink.c:783 [inline] [<00000000204d7a1c>] genl_rcv_msg+0x2bf/0x4f0 net/netlink/genetlink.c:800 [<00000000c0d6a995>] netlink_rcv_skb+0x134/0x3d0 net/netlink/af_netlink.c:2504 [<00000000d78b9d2c>] genl_rcv+0x24/0x40 net/netlink/genetlink.c:811 [<000000009733081b>] netlink_unicast_kernel net/netlink/af_netlink.c:1314 [inline] [<000000009733081b>] netlink_unicast+0x4a0/0x6a0 net/netlink/af_netlink.c:1340 [<00000000d5fd43b8>] netlink_sendmsg+0x789/0xc70 net/netlink/af_netlink.c:1929 [<000000000a2d1e40>] sock_sendmsg_nosec net/socket.c:654 [inline] [<000000000a2d1e40>] sock_sendmsg+0x139/0x170 net/socket.c:674 [<00000000321d1969>] ____sys_sendmsg+0x658/0x7d0 net/socket.c:2350 [<00000000964e16bc>] ___sys_sendmsg+0xf8/0x170 net/socket.c:2404 [<000000001615e288>] __sys_sendmsg+0xd3/0x190 net/socket.c:2433 [<000000004ee8b6a5>] do_syscall_64+0x37/0x90 arch/x86/entry/common.c:47 [<00000000171c7cee>] entry_SYSCALL_64_after_hwframe+0x44/0xae The memory of doi_def->map.std pointing is allocated in netlbl_cipsov4_add_std, but no place has freed it. It should be freed in cipso_v4_doi_free which frees the cipso DOI resource.
CVE-2021-47249 1 Linux 1 Linux Kernel 2025-05-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: net: rds: fix memory leak in rds_recvmsg Syzbot reported memory leak in rds. The problem was in unputted refcount in case of error. int rds_recvmsg(struct socket *sock, struct msghdr *msg, size_t size, int msg_flags) { ... if (!rds_next_incoming(rs, &inc)) { ... } After this "if" inc refcount incremented and if (rds_cmsg_recv(inc, msg, rs)) { ret = -EFAULT; goto out; } ... out: return ret; } in case of rds_cmsg_recv() fail the refcount won't be decremented. And it's easy to see from ftrace log, that rds_inc_addref() don't have rds_inc_put() pair in rds_recvmsg() after rds_cmsg_recv() 1) | rds_recvmsg() { 1) 3.721 us | rds_inc_addref(); 1) 3.853 us | rds_message_inc_copy_to_user(); 1) + 10.395 us | rds_cmsg_recv(); 1) + 34.260 us | }
CVE-2021-47248 1 Linux 1 Linux Kernel 2025-05-04 4.7 Medium
In the Linux kernel, the following vulnerability has been resolved: udp: fix race between close() and udp_abort() Kaustubh reported and diagnosed a panic in udp_lib_lookup(). The root cause is udp_abort() racing with close(). Both racing functions acquire the socket lock, but udp{v6}_destroy_sock() release it before performing destructive actions. We can't easily extend the socket lock scope to avoid the race, instead use the SOCK_DEAD flag to prevent udp_abort from doing any action when the critical race happens. Diagnosed-and-tested-by: Kaustubh Pandey <kapandey@codeaurora.org>
CVE-2021-47246 1 Linux 1 Linux Kernel 2025-05-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: net/mlx5e: Fix page reclaim for dead peer hairpin When adding a hairpin flow, a firmware-side send queue is created for the peer net device, which claims some host memory pages for its internal ring buffer. If the peer net device is removed/unbound before the hairpin flow is deleted, then the send queue is not destroyed which leads to a stack trace on pci device remove: [ 748.005230] mlx5_core 0000:08:00.2: wait_func:1094:(pid 12985): MANAGE_PAGES(0x108) timeout. Will cause a leak of a command resource [ 748.005231] mlx5_core 0000:08:00.2: reclaim_pages:514:(pid 12985): failed reclaiming pages: err -110 [ 748.001835] mlx5_core 0000:08:00.2: mlx5_reclaim_root_pages:653:(pid 12985): failed reclaiming pages (-110) for func id 0x0 [ 748.002171] ------------[ cut here ]------------ [ 748.001177] FW pages counter is 4 after reclaiming all pages [ 748.001186] WARNING: CPU: 1 PID: 12985 at drivers/net/ethernet/mellanox/mlx5/core/pagealloc.c:685 mlx5_reclaim_startup_pages+0x34b/0x460 [mlx5_core] [ +0.002771] Modules linked in: cls_flower mlx5_ib mlx5_core ptp pps_core act_mirred sch_ingress openvswitch nsh xt_conntrack xt_MASQUERADE nf_conntrack_netlink nfnetlink xt_addrtype iptable_nat nf_nat nf_conntrack nf_defrag_ipv6 nf_defrag_ipv4 br_netfilter rpcrdma rdma_ucm ib_iser libiscsi scsi_transport_iscsi rdma_cm ib_umad ib_ipoib iw_cm ib_cm ib_uverbs ib_core overlay fuse [last unloaded: pps_core] [ 748.007225] CPU: 1 PID: 12985 Comm: tee Not tainted 5.12.0+ #1 [ 748.001376] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 [ 748.002315] RIP: 0010:mlx5_reclaim_startup_pages+0x34b/0x460 [mlx5_core] [ 748.001679] Code: 28 00 00 00 0f 85 22 01 00 00 48 81 c4 b0 00 00 00 31 c0 5b 5d 41 5c 41 5d 41 5e 41 5f c3 48 c7 c7 40 cc 19 a1 e8 9f 71 0e e2 <0f> 0b e9 30 ff ff ff 48 c7 c7 a0 cc 19 a1 e8 8c 71 0e e2 0f 0b e9 [ 748.003781] RSP: 0018:ffff88815220faf8 EFLAGS: 00010286 [ 748.001149] RAX: 0000000000000000 RBX: ffff8881b4900280 RCX: 0000000000000000 [ 748.001445] RDX: 0000000000000027 RSI: 0000000000000004 RDI: ffffed102a441f51 [ 748.001614] RBP: 00000000000032b9 R08: 0000000000000001 R09: ffffed1054a15ee8 [ 748.001446] R10: ffff8882a50af73b R11: ffffed1054a15ee7 R12: fffffbfff07c1e30 [ 748.001447] R13: dffffc0000000000 R14: ffff8881b492cba8 R15: 0000000000000000 [ 748.001429] FS: 00007f58bd08b580(0000) GS:ffff8882a5080000(0000) knlGS:0000000000000000 [ 748.001695] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 748.001309] CR2: 000055a026351740 CR3: 00000001d3b48006 CR4: 0000000000370ea0 [ 748.001506] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [ 748.001483] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [ 748.001654] Call Trace: [ 748.000576] ? mlx5_satisfy_startup_pages+0x290/0x290 [mlx5_core] [ 748.001416] ? mlx5_cmd_teardown_hca+0xa2/0xd0 [mlx5_core] [ 748.001354] ? mlx5_cmd_init_hca+0x280/0x280 [mlx5_core] [ 748.001203] mlx5_function_teardown+0x30/0x60 [mlx5_core] [ 748.001275] mlx5_uninit_one+0xa7/0xc0 [mlx5_core] [ 748.001200] remove_one+0x5f/0xc0 [mlx5_core] [ 748.001075] pci_device_remove+0x9f/0x1d0 [ 748.000833] device_release_driver_internal+0x1e0/0x490 [ 748.001207] unbind_store+0x19f/0x200 [ 748.000942] ? sysfs_file_ops+0x170/0x170 [ 748.001000] kernfs_fop_write_iter+0x2bc/0x450 [ 748.000970] new_sync_write+0x373/0x610 [ 748.001124] ? new_sync_read+0x600/0x600 [ 748.001057] ? lock_acquire+0x4d6/0x700 [ 748.000908] ? lockdep_hardirqs_on_prepare+0x400/0x400 [ 748.001126] ? fd_install+0x1c9/0x4d0 [ 748.000951] vfs_write+0x4d0/0x800 [ 748.000804] ksys_write+0xf9/0x1d0 [ 748.000868] ? __x64_sys_read+0xb0/0xb0 [ 748.000811] ? filp_open+0x50/0x50 [ 748.000919] ? syscall_enter_from_user_mode+0x1d/0x50 [ 748.001223] do_syscall_64+0x3f/0x80 [ 748.000892] entry_SYSCALL_64_after_hwframe+0x44/0xae [ 748.00 ---truncated---
CVE-2021-47245 1 Linux 1 Linux Kernel 2025-05-04 7.1 High
In the Linux kernel, the following vulnerability has been resolved: netfilter: synproxy: Fix out of bounds when parsing TCP options The TCP option parser in synproxy (synproxy_parse_options) could read one byte out of bounds. When the length is 1, the execution flow gets into the loop, reads one byte of the opcode, and if the opcode is neither TCPOPT_EOL nor TCPOPT_NOP, it reads one more byte, which exceeds the length of 1. This fix is inspired by commit 9609dad263f8 ("ipv4: tcp_input: fix stack out of bounds when parsing TCP options."). v2 changes: Added an early return when length < 0 to avoid calling skb_header_pointer with negative length.
CVE-2021-47244 1 Linux 1 Linux Kernel 2025-05-04 6.2 Medium
In the Linux kernel, the following vulnerability has been resolved: mptcp: Fix out of bounds when parsing TCP options The TCP option parser in mptcp (mptcp_get_options) could read one byte out of bounds. When the length is 1, the execution flow gets into the loop, reads one byte of the opcode, and if the opcode is neither TCPOPT_EOL nor TCPOPT_NOP, it reads one more byte, which exceeds the length of 1. This fix is inspired by commit 9609dad263f8 ("ipv4: tcp_input: fix stack out of bounds when parsing TCP options.").
CVE-2021-47243 1 Linux 1 Linux Kernel 2025-05-04 7.1 High
In the Linux kernel, the following vulnerability has been resolved: sch_cake: Fix out of bounds when parsing TCP options and header The TCP option parser in cake qdisc (cake_get_tcpopt and cake_tcph_may_drop) could read one byte out of bounds. When the length is 1, the execution flow gets into the loop, reads one byte of the opcode, and if the opcode is neither TCPOPT_EOL nor TCPOPT_NOP, it reads one more byte, which exceeds the length of 1. This fix is inspired by commit 9609dad263f8 ("ipv4: tcp_input: fix stack out of bounds when parsing TCP options."). v2 changes: Added doff validation in cake_get_tcphdr to avoid parsing garbage as TCP header. Although it wasn't strictly an out-of-bounds access (memory was allocated), garbage values could be read where CAKE expected the TCP header if doff was smaller than 5.
CVE-2021-47241 1 Linux 1 Linux Kernel 2025-05-04 7.5 High
In the Linux kernel, the following vulnerability has been resolved: ethtool: strset: fix message length calculation Outer nest for ETHTOOL_A_STRSET_STRINGSETS is not accounted for. This may result in ETHTOOL_MSG_STRSET_GET producing a warning like: calculated message payload length (684) not sufficient WARNING: CPU: 0 PID: 30967 at net/ethtool/netlink.c:369 ethnl_default_doit+0x87a/0xa20 and a splat. As usually with such warnings three conditions must be met for the warning to trigger: - there must be no skb size rounding up (e.g. reply_size of 684); - string set must be per-device (so that the header gets populated); - the device name must be at least 12 characters long. all in all with current user space it looks like reading priv flags is the only place this could potentially happen. Or with syzbot :)
CVE-2021-47240 1 Linux 1 Linux Kernel 2025-05-04 7.1 High
In the Linux kernel, the following vulnerability has been resolved: net: qrtr: fix OOB Read in qrtr_endpoint_post Syzbot reported slab-out-of-bounds Read in qrtr_endpoint_post. The problem was in wrong _size_ type: if (len != ALIGN(size, 4) + hdrlen) goto err; If size from qrtr_hdr is 4294967293 (0xfffffffd), the result of ALIGN(size, 4) will be 0. In case of len == hdrlen and size == 4294967293 in header this check won't fail and skb_put_data(skb, data + hdrlen, size); will read out of bound from data, which is hdrlen allocated block.
CVE-2021-47239 1 Linux 1 Linux Kernel 2025-05-04 7.8 High
In the Linux kernel, the following vulnerability has been resolved: net: usb: fix possible use-after-free in smsc75xx_bind The commit 46a8b29c6306 ("net: usb: fix memory leak in smsc75xx_bind") fails to clean up the work scheduled in smsc75xx_reset-> smsc75xx_set_multicast, which leads to use-after-free if the work is scheduled to start after the deallocation. In addition, this patch also removes a dangling pointer - dev->data[0]. This patch calls cancel_work_sync to cancel the scheduled work and set the dangling pointer to NULL.
CVE-2021-47237 1 Linux 1 Linux Kernel 2025-05-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: net: hamradio: fix memory leak in mkiss_close My local syzbot instance hit memory leak in mkiss_open()[1]. The problem was in missing free_netdev() in mkiss_close(). In mkiss_open() netdevice is allocated and then registered, but in mkiss_close() netdevice was only unregistered, but not freed. Fail log: BUG: memory leak unreferenced object 0xffff8880281ba000 (size 4096): comm "syz-executor.1", pid 11443, jiffies 4295046091 (age 17.660s) hex dump (first 32 bytes): 61 78 30 00 00 00 00 00 00 00 00 00 00 00 00 00 ax0............. 00 27 fa 2a 80 88 ff ff 00 00 00 00 00 00 00 00 .'.*............ backtrace: [<ffffffff81a27201>] kvmalloc_node+0x61/0xf0 [<ffffffff8706e7e8>] alloc_netdev_mqs+0x98/0xe80 [<ffffffff84e64192>] mkiss_open+0xb2/0x6f0 [1] [<ffffffff842355db>] tty_ldisc_open+0x9b/0x110 [<ffffffff84236488>] tty_set_ldisc+0x2e8/0x670 [<ffffffff8421f7f3>] tty_ioctl+0xda3/0x1440 [<ffffffff81c9f273>] __x64_sys_ioctl+0x193/0x200 [<ffffffff8911263a>] do_syscall_64+0x3a/0xb0 [<ffffffff89200068>] entry_SYSCALL_64_after_hwframe+0x44/0xae BUG: memory leak unreferenced object 0xffff8880141a9a00 (size 96): comm "syz-executor.1", pid 11443, jiffies 4295046091 (age 17.660s) hex dump (first 32 bytes): e8 a2 1b 28 80 88 ff ff e8 a2 1b 28 80 88 ff ff ...(.......(.... 98 92 9c aa b0 40 02 00 00 00 00 00 00 00 00 00 .....@.......... backtrace: [<ffffffff8709f68b>] __hw_addr_create_ex+0x5b/0x310 [<ffffffff8709fb38>] __hw_addr_add_ex+0x1f8/0x2b0 [<ffffffff870a0c7b>] dev_addr_init+0x10b/0x1f0 [<ffffffff8706e88b>] alloc_netdev_mqs+0x13b/0xe80 [<ffffffff84e64192>] mkiss_open+0xb2/0x6f0 [1] [<ffffffff842355db>] tty_ldisc_open+0x9b/0x110 [<ffffffff84236488>] tty_set_ldisc+0x2e8/0x670 [<ffffffff8421f7f3>] tty_ioctl+0xda3/0x1440 [<ffffffff81c9f273>] __x64_sys_ioctl+0x193/0x200 [<ffffffff8911263a>] do_syscall_64+0x3a/0xb0 [<ffffffff89200068>] entry_SYSCALL_64_after_hwframe+0x44/0xae BUG: memory leak unreferenced object 0xffff8880219bfc00 (size 512): comm "syz-executor.1", pid 11443, jiffies 4295046091 (age 17.660s) hex dump (first 32 bytes): 00 a0 1b 28 80 88 ff ff 80 8f b1 8d ff ff ff ff ...(............ 80 8f b1 8d ff ff ff ff 00 00 00 00 00 00 00 00 ................ backtrace: [<ffffffff81a27201>] kvmalloc_node+0x61/0xf0 [<ffffffff8706eec7>] alloc_netdev_mqs+0x777/0xe80 [<ffffffff84e64192>] mkiss_open+0xb2/0x6f0 [1] [<ffffffff842355db>] tty_ldisc_open+0x9b/0x110 [<ffffffff84236488>] tty_set_ldisc+0x2e8/0x670 [<ffffffff8421f7f3>] tty_ioctl+0xda3/0x1440 [<ffffffff81c9f273>] __x64_sys_ioctl+0x193/0x200 [<ffffffff8911263a>] do_syscall_64+0x3a/0xb0 [<ffffffff89200068>] entry_SYSCALL_64_after_hwframe+0x44/0xae BUG: memory leak unreferenced object 0xffff888029b2b200 (size 256): comm "syz-executor.1", pid 11443, jiffies 4295046091 (age 17.660s) hex dump (first 32 bytes): 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ backtrace: [<ffffffff81a27201>] kvmalloc_node+0x61/0xf0 [<ffffffff8706f062>] alloc_netdev_mqs+0x912/0xe80 [<ffffffff84e64192>] mkiss_open+0xb2/0x6f0 [1] [<ffffffff842355db>] tty_ldisc_open+0x9b/0x110 [<ffffffff84236488>] tty_set_ldisc+0x2e8/0x670 [<ffffffff8421f7f3>] tty_ioctl+0xda3/0x1440 [<ffffffff81c9f273>] __x64_sys_ioctl+0x193/0x200 [<ffffffff8911263a>] do_syscall_64+0x3a/0xb0 [<ffffffff89200068>] entry_SYSCALL_64_after_hwframe+0x44/0xae