| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| Untrusted pointer dereference in UEFI firmware for some Intel(R) reference processors may allow a privileged user to potentially enable escalation of privilege via local access. |
| Unchecked return value in firmware for some Intel(R) CSME may allow an unauthenticated user to potentially enable escalation of privilege via physical access. |
| Improper handling of physical or environmental conditions in some Intel(R) Processors may allow an authenticated user to enable denial of service via local access. |
| Sequence of processor instructions leads to unexpected behavior in the Intel(R) DSA V1.0 for some Intel(R) Xeon(R) Processors may allow an authenticated user to potentially enable denial of service via local access. |
| Improper Finite State Machines (FSMs) in Hardware Logic for some Intel(R) Processors may allow privileged user to potentially enable denial of service via local access. |
| Uncaught exception in the core management mechanism for some Intel(R) Processors may allow an authenticated user to potentially enable denial of service via local access. |
| Improperly implemented security check for standard in the DDRIO configuration for some Intel(R) Xeon(R) 6 Processors when using Intel(R) SGX or Intel(R) TDX may allow a privileged user to potentially enable escalation of privilege via local access. |
| Out-of-bounds write in the memory subsystem for some Intel(R) Xeon(R) 6 processors when using Intel(R) SGX or Intel(R) TDX may allow a privileged user to potentially enable escalation of privilege via local access. |
| Insufficient control flow management in the Alias Checking Trusted Module (ACTM) firmware for some Intel(R) Xeon(R) processors may allow a privileged user to potentially enable escalation of privilege via local access. |
| Improper handling of overlap between protected memory ranges for some Intel(R) Xeon(R) 6 processor with Intel(R) TDX may allow a privileged user to potentially enable escalation of privilege via local access. |
| Sequence of processor instructions leads to unexpected behavior for some Intel(R) Xeon(R) 6 Scalable processors may allow an authenticated user to potentially enable escalation of privilege via local access |
| Insufficient granularity of access control in the OOB-MSM for some Intel(R) Xeon(R) 6 Scalable processors may allow a privileged user to potentially enable escalation of privilege via adjacent access. |
| Missing reference to active allocated resource for some Intel(R) Xeon(R) processors may allow an authenticated user to potentially enable denial of service via local access. |
| Improper Isolation or Compartmentalization in the stream cache mechanism for some Intel(R) Processors may allow an authenticated user to potentially enable escalation of privilege via local access. |
| Improper buffer restrictions for some Intel(R) Xeon(R) Processor firmware with SGX enabled may allow a privileged user to potentially enable escalation of privilege via local access. |
| Apache Log4j2 2.0-beta9 through 2.15.0 (excluding security releases 2.12.2, 2.12.3, and 2.3.1) JNDI features used in configuration, log messages, and parameters do not protect against attacker controlled LDAP and other JNDI related endpoints. An attacker who can control log messages or log message parameters can execute arbitrary code loaded from LDAP servers when message lookup substitution is enabled. From log4j 2.15.0, this behavior has been disabled by default. From version 2.16.0 (along with 2.12.2, 2.12.3, and 2.3.1), this functionality has been completely removed. Note that this vulnerability is specific to log4j-core and does not affect log4net, log4cxx, or other Apache Logging Services projects. |
| It was found that the fix to address CVE-2021-44228 in Apache Log4j 2.15.0 was incomplete in certain non-default configurations. This could allows attackers with control over Thread Context Map (MDC) input data when the logging configuration uses a non-default Pattern Layout with either a Context Lookup (for example, $${ctx:loginId}) or a Thread Context Map pattern (%X, %mdc, or %MDC) to craft malicious input data using a JNDI Lookup pattern resulting in an information leak and remote code execution in some environments and local code execution in all environments. Log4j 2.16.0 (Java 8) and 2.12.2 (Java 7) fix this issue by removing support for message lookup patterns and disabling JNDI functionality by default. |
| An unprivileged network attacker could gain system privileges to provisioned Intel manageability SKUs: Intel Active Management Technology (AMT) and Intel Standard Manageability (ISM). An unprivileged local attacker could provision manageability features gaining unprivileged network or local system privileges on Intel manageability SKUs: Intel Active Management Technology (AMT), Intel Standard Manageability (ISM), and Intel Small Business Technology (SBT). |
| (1) IQVW32.sys before 1.3.1.0 and (2) IQVW64.sys before 1.3.1.0 in the Intel Ethernet diagnostics driver for Windows allows local users to cause a denial of service or possibly execute arbitrary code with kernel privileges via a crafted (a) 0x80862013, (b) 0x8086200B, (c) 0x8086200F, or (d) 0x80862007 IOCTL call. |
| Potential buffer overflow
in unsafe UEFI variable handling
in Phoenix SecureCore™ for select Intel platforms
This issue affects:
Phoenix
SecureCore™ for Intel Kaby Lake: from 4.0.1.1 before 4.0.1.998;
Phoenix
SecureCore™ for Intel Coffee Lake: from 4.1.0.1 before 4.1.0.562;
Phoenix
SecureCore™ for Intel Ice Lake: from 4.2.0.1 before 4.2.0.323;
Phoenix
SecureCore™ for Intel Comet Lake: from 4.2.1.1 before 4.2.1.287;
Phoenix
SecureCore™ for Intel Tiger Lake: from 4.3.0.1 before 4.3.0.236;
Phoenix
SecureCore™ for Intel Jasper Lake: from 4.3.1.1 before 4.3.1.184;
Phoenix
SecureCore™ for Intel Alder Lake: from 4.4.0.1 before 4.4.0.269;
Phoenix
SecureCore™ for Intel Raptor Lake: from 4.5.0.1 before 4.5.0.218;
Phoenix
SecureCore™ for Intel Meteor Lake: from 4.5.1.1 before 4.5.1.15. |