| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
NFS: Fix potential buffer overflowin nfs_sysfs_link_rpc_client()
name is char[64] where the size of clnt->cl_program->name remains
unknown. Invoking strcat() directly will also lead to potential buffer
overflow. Change them to strscpy() and strncat() to fix potential
issues. |
| In the Linux kernel, the following vulnerability has been resolved:
ocfs2: handle a symlink read error correctly
Patch series "Convert ocfs2 to use folios".
Mark did a conversion of ocfs2 to use folios and sent it to me as a
giant patch for review ;-)
So I've redone it as individual patches, and credited Mark for the patches
where his code is substantially the same. It's not a bad way to do it;
his patch had some bugs and my patches had some bugs. Hopefully all our
bugs were different from each other. And hopefully Mark likes all the
changes I made to his code!
This patch (of 23):
If we can't read the buffer, be sure to unlock the page before returning. |
| In the Linux kernel, the following vulnerability has been resolved:
firmware: qcom: scm: smc: Handle missing SCM device
Commit ca61d6836e6f ("firmware: qcom: scm: fix a NULL-pointer
dereference") makes it explicit that qcom_scm_get_tzmem_pool() can
return NULL, therefore its users should handle this. |
| In the Linux kernel, the following vulnerability has been resolved:
media: intel/ipu6: remove cpu latency qos request on error
Fix cpu latency qos list corruption like below. It happens when
we do not remove cpu latency request on error path and free
corresponding memory.
[ 30.634378] l7 kernel: list_add corruption. prev->next should be next (ffffffff9645e960), but was 0000000100100001. (prev=ffff8e9e877e20a8).
[ 30.634388] l7 kernel: WARNING: CPU: 2 PID: 2008 at lib/list_debug.c:32 __list_add_valid_or_report+0x83/0xa0
<snip>
[ 30.634640] l7 kernel: Call Trace:
[ 30.634650] l7 kernel: <TASK>
[ 30.634659] l7 kernel: ? __list_add_valid_or_report+0x83/0xa0
[ 30.634669] l7 kernel: ? __warn.cold+0x93/0xf6
[ 30.634678] l7 kernel: ? __list_add_valid_or_report+0x83/0xa0
[ 30.634690] l7 kernel: ? report_bug+0xff/0x140
[ 30.634702] l7 kernel: ? handle_bug+0x58/0x90
[ 30.634712] l7 kernel: ? exc_invalid_op+0x17/0x70
[ 30.634723] l7 kernel: ? asm_exc_invalid_op+0x1a/0x20
[ 30.634733] l7 kernel: ? __list_add_valid_or_report+0x83/0xa0
[ 30.634742] l7 kernel: plist_add+0xdd/0x140
[ 30.634754] l7 kernel: pm_qos_update_target+0xa0/0x1f0
[ 30.634764] l7 kernel: cpu_latency_qos_update_request+0x61/0xc0
[ 30.634773] l7 kernel: intel_dp_aux_xfer+0x4c7/0x6e0 [i915 1f824655ed04687c2b0d23dbce759fa785f6d033] |
| In the Linux kernel, the following vulnerability has been resolved:
media: i2c: ds90ub9x3: Fix extra fwnode_handle_put()
The ub913 and ub953 drivers call fwnode_handle_put(priv->sd.fwnode) as
part of their remove process, and if the driver is removed multiple
times, eventually leads to put "overflow", possibly causing memory
corruption or crash.
The fwnode_handle_put() is a leftover from commit 905f88ccebb1 ("media:
i2c: ds90ub9x3: Fix sub-device matching"), which changed the code
related to the sd.fwnode, but missed removing these fwnode_handle_put()
calls. |
| In the Linux kernel, the following vulnerability has been resolved:
PCI: dwc: ep: Prevent changing BAR size/flags in pci_epc_set_bar()
In commit 4284c88fff0e ("PCI: designware-ep: Allow pci_epc_set_bar() update
inbound map address") set_bar() was modified to support dynamically
changing the backing physical address of a BAR that was already configured.
This means that set_bar() can be called twice, without ever calling
clear_bar() (as calling clear_bar() would clear the BAR's PCI address
assigned by the host).
This can only be done if the new BAR size/flags does not differ from the
existing BAR configuration. Add these missing checks.
If we allow set_bar() to set e.g. a new BAR size that differs from the
existing BAR size, the new address translation range will be smaller than
the BAR size already determined by the host, which would mean that a read
past the new BAR size would pass the iATU untranslated, which could allow
the host to read memory not belonging to the new struct pci_epf_bar.
While at it, add comments which clarifies the support for dynamically
changing the physical address of a BAR. (Which was also missing.) |
| In the Linux kernel, the following vulnerability has been resolved:
KEYS: trusted: dcp: fix improper sg use with CONFIG_VMAP_STACK=y
With vmalloc stack addresses enabled (CONFIG_VMAP_STACK=y) DCP trusted
keys can crash during en- and decryption of the blob encryption key via
the DCP crypto driver. This is caused by improperly using sg_init_one()
with vmalloc'd stack buffers (plain_key_blob).
Fix this by always using kmalloc() for buffers we give to the DCP crypto
driver. |
| A link following vulnerability in Trend Micro Deep Security 20.x agents below build 20.0.1-3180 could allow a local attacker to escalate privileges on affected installations.
Please note: an attacker must first obtain the ability to execute low-privileged code on the target system in order to exploit this vulnerability. |
| In the Linux kernel, the following vulnerability has been resolved:
bpf: Fix insufficient bounds propagation from adjust_scalar_min_max_vals
Kuee reported a corner case where the tnum becomes constant after the call
to __reg_bound_offset(), but the register's bounds are not, that is, its
min bounds are still not equal to the register's max bounds.
This in turn allows to leak pointers through turning a pointer register as
is into an unknown scalar via adjust_ptr_min_max_vals().
Before:
func#0 @0
0: R1=ctx(off=0,imm=0,umax=0,var_off=(0x0; 0x0)) R10=fp(off=0,imm=0,umax=0,var_off=(0x0; 0x0))
0: (b7) r0 = 1 ; R0_w=scalar(imm=1,umin=1,umax=1,var_off=(0x1; 0x0))
1: (b7) r3 = 0 ; R3_w=scalar(imm=0,umax=0,var_off=(0x0; 0x0))
2: (87) r3 = -r3 ; R3_w=scalar()
3: (87) r3 = -r3 ; R3_w=scalar()
4: (47) r3 |= 32767 ; R3_w=scalar(smin=-9223372036854743041,umin=32767,var_off=(0x7fff; 0xffffffffffff8000),s32_min=-2147450881)
5: (75) if r3 s>= 0x0 goto pc+1 ; R3_w=scalar(umin=9223372036854808575,var_off=(0x8000000000007fff; 0x7fffffffffff8000),s32_min=-2147450881,u32_min=32767)
6: (95) exit
from 5 to 7: R0=scalar(imm=1,umin=1,umax=1,var_off=(0x1; 0x0)) R1=ctx(off=0,imm=0,umax=0,var_off=(0x0; 0x0)) R3=scalar(umin=32767,umax=9223372036854775807,var_off=(0x7fff; 0x7fffffffffff8000),s32_min=-2147450881) R10=fp(off=0,imm=0,umax=0,var_off=(0x0; 0x0))
7: (d5) if r3 s<= 0x8000 goto pc+1 ; R3=scalar(umin=32769,umax=9223372036854775807,var_off=(0x7fff; 0x7fffffffffff8000),s32_min=-2147450881,u32_min=32767)
8: (95) exit
from 7 to 9: R0=scalar(imm=1,umin=1,umax=1,var_off=(0x1; 0x0)) R1=ctx(off=0,imm=0,umax=0,var_off=(0x0; 0x0)) R3=scalar(umin=32767,umax=32768,var_off=(0x7fff; 0x8000)) R10=fp(off=0,imm=0,umax=0,var_off=(0x0; 0x0))
9: (07) r3 += -32767 ; R3_w=scalar(imm=0,umax=1,var_off=(0x0; 0x0)) <--- [*]
10: (95) exit
What can be seen here is that R3=scalar(umin=32767,umax=32768,var_off=(0x7fff;
0x8000)) after the operation R3 += -32767 results in a 'malformed' constant, that
is, R3_w=scalar(imm=0,umax=1,var_off=(0x0; 0x0)). Intersecting with var_off has
not been done at that point via __update_reg_bounds(), which would have improved
the umax to be equal to umin.
Refactor the tnum <> min/max bounds information flow into a reg_bounds_sync()
helper and use it consistently everywhere. After the fix, bounds have been
corrected to R3_w=scalar(imm=0,umax=0,var_off=(0x0; 0x0)) and thus the register
is regarded as a 'proper' constant scalar of 0.
After:
func#0 @0
0: R1=ctx(off=0,imm=0,umax=0,var_off=(0x0; 0x0)) R10=fp(off=0,imm=0,umax=0,var_off=(0x0; 0x0))
0: (b7) r0 = 1 ; R0_w=scalar(imm=1,umin=1,umax=1,var_off=(0x1; 0x0))
1: (b7) r3 = 0 ; R3_w=scalar(imm=0,umax=0,var_off=(0x0; 0x0))
2: (87) r3 = -r3 ; R3_w=scalar()
3: (87) r3 = -r3 ; R3_w=scalar()
4: (47) r3 |= 32767 ; R3_w=scalar(smin=-9223372036854743041,umin=32767,var_off=(0x7fff; 0xffffffffffff8000),s32_min=-2147450881)
5: (75) if r3 s>= 0x0 goto pc+1 ; R3_w=scalar(umin=9223372036854808575,var_off=(0x8000000000007fff; 0x7fffffffffff8000),s32_min=-2147450881,u32_min=32767)
6: (95) exit
from 5 to 7: R0=scalar(imm=1,umin=1,umax=1,var_off=(0x1; 0x0)) R1=ctx(off=0,imm=0,umax=0,var_off=(0x0; 0x0)) R3=scalar(umin=32767,umax=9223372036854775807,var_off=(0x7fff; 0x7fffffffffff8000),s32_min=-2147450881) R10=fp(off=0,imm=0,umax=0,var_off=(0x0; 0x0))
7: (d5) if r3 s<= 0x8000 goto pc+1 ; R3=scalar(umin=32769,umax=9223372036854775807,var_off=(0x7fff; 0x7fffffffffff8000),s32_min=-2147450881,u32_min=32767)
8: (95) exit
from 7 to 9: R0=scalar(imm=1,umin=1,umax=1,var_off=(0x1; 0x0)) R1=ctx(off=0,imm=0,umax=0,var_off=(0x0; 0x0)) R3=scalar(umin=32767,umax=32768,var_off=(0x7fff; 0x8000)) R10=fp(off=0
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
fscache: Fix invalidation/lookup race
If an NFS file is opened for writing and closed, fscache_invalidate() will
be asked to invalidate the file - however, if the cookie is in the
LOOKING_UP state (or the CREATING state), then request to invalidate
doesn't get recorded for fscache_cookie_state_machine() to do something
with.
Fix this by making __fscache_invalidate() set a flag if it sees the cookie
is in the LOOKING_UP state to indicate that we need to go to invalidation.
Note that this requires a count on the n_accesses counter for the state
machine, which that will release when it's done.
fscache_cookie_state_machine() then shifts to the INVALIDATING state if it
sees the flag.
Without this, an nfs file can get corrupted if it gets modified locally and
then read locally as the cache contents may not get updated. |
| In the Linux kernel, the following vulnerability has been resolved:
net: dsa: qca8k: reset cpu port on MTU change
It was discovered that the Documentation lacks of a fundamental detail
on how to correctly change the MAX_FRAME_SIZE of the switch.
In fact if the MAX_FRAME_SIZE is changed while the cpu port is on, the
switch panics and cease to send any packet. This cause the mgmt ethernet
system to not receive any packet (the slow fallback still works) and
makes the device not reachable. To recover from this a switch reset is
required.
To correctly handle this, turn off the cpu ports before changing the
MAX_FRAME_SIZE and turn on again after the value is applied. |
| In the Linux kernel, the following vulnerability has been resolved:
dmaengine: qcom: bam_dma: fix runtime PM underflow
Commit dbad41e7bb5f ("dmaengine: qcom: bam_dma: check if the runtime pm enabled")
caused unbalanced pm_runtime_get/put() calls when the bam is
controlled remotely. This commit reverts it and just enables pm_runtime
in all cases, the clk_* functions already just nop when the clock is NULL.
Also clean up a bit by removing unnecessary bamclk null checks. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: mac80211: fix queue selection for mesh/OCB interfaces
When using iTXQ, the code assumes that there is only one vif queue for
broadcast packets, using the BE queue. Allowing non-BE queue marking
violates that assumption and txq->ac == skb_queue_mapping is no longer
guaranteed. This can cause issues with queue handling in the driver and
also causes issues with the recent ATF change, resulting in an AQL
underflow warning. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/panfrost: Fix shrinker list corruption by madvise IOCTL
Calling madvise IOCTL twice on BO causes memory shrinker list corruption
and crashes kernel because BO is already on the list and it's added to
the list again, while BO should be removed from the list before it's
re-added. Fix it. |
| In the Linux kernel, the following vulnerability has been resolved:
net: stmmac: dwc-qos: Disable split header for Tegra194
There is a long-standing issue with the Synopsys DWC Ethernet driver
for Tegra194 where random system crashes have been observed [0]. The
problem occurs when the split header feature is enabled in the stmmac
driver. In the bad case, a larger than expected buffer length is
received and causes the calculation of the total buffer length to
overflow. This results in a very large buffer length that causes the
kernel to crash. Why this larger buffer length is received is not clear,
however, the feedback from the NVIDIA design team is that the split
header feature is not supported for Tegra194. Therefore, disable split
header support for Tegra194 to prevent these random crashes from
occurring.
[0] https://lore.kernel.org/linux-tegra/b0b17697-f23e-8fa5-3757-604a86f3a095@nvidia.com/ |
| In the Linux kernel, the following vulnerability has been resolved:
drm/i915/selftests: fix subtraction overflow bug
On some machines hole_end can be small enough to cause subtraction
overflow. On the other side (addr + 2 * min_alignment) can overflow
in case of mock tests. This patch should handle both cases.
(cherry picked from commit ab3edc679c552a466e4bf0b11af3666008bd65a2) |
| In the Linux kernel, the following vulnerability has been resolved:
net: stmmac: fix leaks in probe
These two error paths should clean up before returning. |
| In the Linux kernel, the following vulnerability has been resolved:
sfc: fix kernel panic when creating VF
When creating VFs a kernel panic can happen when calling to
efx_ef10_try_update_nic_stats_vf.
When releasing a DMA coherent buffer, sometimes, I don't know in what
specific circumstances, it has to unmap memory with vunmap. It is
disallowed to do that in IRQ context or with BH disabled. Otherwise, we
hit this line in vunmap, causing the crash:
BUG_ON(in_interrupt());
This patch reenables BH to release the buffer.
Log messages when the bug is hit:
kernel BUG at mm/vmalloc.c:2727!
invalid opcode: 0000 [#1] PREEMPT SMP NOPTI
CPU: 6 PID: 1462 Comm: NetworkManager Kdump: loaded Tainted: G I --------- --- 5.14.0-119.el9.x86_64 #1
Hardware name: Dell Inc. PowerEdge R740/06WXJT, BIOS 2.8.2 08/27/2020
RIP: 0010:vunmap+0x2e/0x30
...skip...
Call Trace:
__iommu_dma_free+0x96/0x100
efx_nic_free_buffer+0x2b/0x40 [sfc]
efx_ef10_try_update_nic_stats_vf+0x14a/0x1c0 [sfc]
efx_ef10_update_stats_vf+0x18/0x40 [sfc]
efx_start_all+0x15e/0x1d0 [sfc]
efx_net_open+0x5a/0xe0 [sfc]
__dev_open+0xe7/0x1a0
__dev_change_flags+0x1d7/0x240
dev_change_flags+0x21/0x60
...skip... |
| In the Linux kernel, the following vulnerability has been resolved:
net: atlantic: remove aq_nic_deinit() when resume
aq_nic_deinit() has been called while suspending, so we don't have to call
it again on resume.
Actually, call it again leads to another hang issue when resuming from
S3.
Jul 8 03:09:44 u-Precision-7865-Tower kernel: [ 5910.992345] Call Trace:
Jul 8 03:09:44 u-Precision-7865-Tower kernel: [ 5910.992346] <TASK>
Jul 8 03:09:44 u-Precision-7865-Tower kernel: [ 5910.992348] aq_nic_deinit+0xb4/0xd0 [atlantic]
Jul 8 03:09:44 u-Precision-7865-Tower kernel: [ 5910.992356] aq_pm_thaw+0x7f/0x100 [atlantic]
Jul 8 03:09:44 u-Precision-7865-Tower kernel: [ 5910.992362] pci_pm_resume+0x5c/0x90
Jul 8 03:09:44 u-Precision-7865-Tower kernel: [ 5910.992366] ? pci_pm_thaw+0x80/0x80
Jul 8 03:09:44 u-Precision-7865-Tower kernel: [ 5910.992368] dpm_run_callback+0x4e/0x120
Jul 8 03:09:44 u-Precision-7865-Tower kernel: [ 5910.992371] device_resume+0xad/0x200
Jul 8 03:09:44 u-Precision-7865-Tower kernel: [ 5910.992373] async_resume+0x1e/0x40
Jul 8 03:09:44 u-Precision-7865-Tower kernel: [ 5910.992374] async_run_entry_fn+0x33/0x120
Jul 8 03:09:44 u-Precision-7865-Tower kernel: [ 5910.992377] process_one_work+0x220/0x3c0
Jul 8 03:09:44 u-Precision-7865-Tower kernel: [ 5910.992380] worker_thread+0x4d/0x3f0
Jul 8 03:09:44 u-Precision-7865-Tower kernel: [ 5910.992382] ? process_one_work+0x3c0/0x3c0
Jul 8 03:09:44 u-Precision-7865-Tower kernel: [ 5910.992384] kthread+0x12a/0x150
Jul 8 03:09:44 u-Precision-7865-Tower kernel: [ 5910.992386] ? set_kthread_struct+0x40/0x40
Jul 8 03:09:44 u-Precision-7865-Tower kernel: [ 5910.992387] ret_from_fork+0x22/0x30
Jul 8 03:09:44 u-Precision-7865-Tower kernel: [ 5910.992391] </TASK>
Jul 8 03:09:44 u-Precision-7865-Tower kernel: [ 5910.992392] ---[ end trace 1ec8c79604ed5e0d ]---
Jul 8 03:09:44 u-Precision-7865-Tower kernel: [ 5910.992394] PM: dpm_run_callback(): pci_pm_resume+0x0/0x90 returns -110
Jul 8 03:09:44 u-Precision-7865-Tower kernel: [ 5910.992397] atlantic 0000:02:00.0: PM: failed to resume async: error -110 |
| In the Linux kernel, the following vulnerability has been resolved:
ASoC: Intel: sof_sdw: handle errors on card registration
If the card registration fails, typically because of deferred probes,
the device properties added for headset codecs are not removed, which
leads to kernel oopses in driver bind/unbind tests.
We already clean-up the device properties when the card is removed,
this code can be moved as a helper and called upon card registration
errors. |