| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amd/pm: fix double free in si_parse_power_table()
In function si_parse_power_table(), array adev->pm.dpm.ps and its member
is allocated. If the allocation of each member fails, the array itself
is freed and returned with an error code. However, the array is later
freed again in si_dpm_fini() function which is called when the function
returns an error.
This leads to potential double free of the array adev->pm.dpm.ps, as
well as leak of its array members, since the members are not freed in
the allocation function and the array is not nulled when freed.
In addition adev->pm.dpm.num_ps, which keeps track of the allocated
array member, is not updated until the member allocation is
successfully finished, this could also lead to either use after free,
or uninitialized variable access in si_dpm_fini().
Fix this by postponing the free of the array until si_dpm_fini() and
increment adev->pm.dpm.num_ps everytime the array member is allocated. |
| In the Linux kernel, the following vulnerability has been resolved:
media: pci: cx23885: Fix the error handling in cx23885_initdev()
When the driver fails to call the dma_set_mask(), the driver will get
the following splat:
[ 55.853884] BUG: KASAN: use-after-free in __process_removed_driver+0x3c/0x240
[ 55.854486] Read of size 8 at addr ffff88810de60408 by task modprobe/590
[ 55.856822] Call Trace:
[ 55.860327] __process_removed_driver+0x3c/0x240
[ 55.861347] bus_for_each_dev+0x102/0x160
[ 55.861681] i2c_del_driver+0x2f/0x50
This is because the driver has initialized the i2c related resources
in cx23885_dev_setup() but not released them in error handling, fix this
bug by modifying the error path that jumps after failing to call the
dma_set_mask(). |
| In the Linux kernel, the following vulnerability has been resolved:
ext4: fix use-after-free in ext4_rename_dir_prepare
We got issue as follows:
EXT4-fs (loop0): mounted filesystem without journal. Opts: ,errors=continue
ext4_get_first_dir_block: bh->b_data=0xffff88810bee6000 len=34478
ext4_get_first_dir_block: *parent_de=0xffff88810beee6ae bh->b_data=0xffff88810bee6000
ext4_rename_dir_prepare: [1] parent_de=0xffff88810beee6ae
==================================================================
BUG: KASAN: use-after-free in ext4_rename_dir_prepare+0x152/0x220
Read of size 4 at addr ffff88810beee6ae by task rep/1895
CPU: 13 PID: 1895 Comm: rep Not tainted 5.10.0+ #241
Call Trace:
dump_stack+0xbe/0xf9
print_address_description.constprop.0+0x1e/0x220
kasan_report.cold+0x37/0x7f
ext4_rename_dir_prepare+0x152/0x220
ext4_rename+0xf44/0x1ad0
ext4_rename2+0x11c/0x170
vfs_rename+0xa84/0x1440
do_renameat2+0x683/0x8f0
__x64_sys_renameat+0x53/0x60
do_syscall_64+0x33/0x40
entry_SYSCALL_64_after_hwframe+0x44/0xa9
RIP: 0033:0x7f45a6fc41c9
RSP: 002b:00007ffc5a470218 EFLAGS: 00000246 ORIG_RAX: 0000000000000108
RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007f45a6fc41c9
RDX: 0000000000000005 RSI: 0000000020000180 RDI: 0000000000000005
RBP: 00007ffc5a470240 R08: 00007ffc5a470160 R09: 0000000020000080
R10: 00000000200001c0 R11: 0000000000000246 R12: 0000000000400bb0
R13: 00007ffc5a470320 R14: 0000000000000000 R15: 0000000000000000
The buggy address belongs to the page:
page:00000000440015ce refcount:0 mapcount:0 mapping:0000000000000000 index:0x1 pfn:0x10beee
flags: 0x200000000000000()
raw: 0200000000000000 ffffea00043ff4c8 ffffea0004325608 0000000000000000
raw: 0000000000000001 0000000000000000 00000000ffffffff 0000000000000000
page dumped because: kasan: bad access detected
Memory state around the buggy address:
ffff88810beee580: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
ffff88810beee600: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
>ffff88810beee680: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
^
ffff88810beee700: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
ffff88810beee780: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
==================================================================
Disabling lock debugging due to kernel taint
ext4_rename_dir_prepare: [2] parent_de->inode=3537895424
ext4_rename_dir_prepare: [3] dir=0xffff888124170140
ext4_rename_dir_prepare: [4] ino=2
ext4_rename_dir_prepare: ent->dir->i_ino=2 parent=-757071872
Reason is first directory entry which 'rec_len' is 34478, then will get illegal
parent entry. Now, we do not check directory entry after read directory block
in 'ext4_get_first_dir_block'.
To solve this issue, check directory entry in 'ext4_get_first_dir_block'.
[ Trigger an ext4_error() instead of just warning if the directory is
missing a '.' or '..' entry. Also make sure we return an error code
if the file system is corrupted. -TYT ] |
| In the Linux kernel, the following vulnerability has been resolved:
ALSA: pcm: Fix races among concurrent hw_params and hw_free calls
Currently we have neither proper check nor protection against the
concurrent calls of PCM hw_params and hw_free ioctls, which may result
in a UAF. Since the existing PCM stream lock can't be used for
protecting the whole ioctl operations, we need a new mutex to protect
those racy calls.
This patch introduced a new mutex, runtime->buffer_mutex, and applies
it to both hw_params and hw_free ioctl code paths. Along with it, the
both functions are slightly modified (the mmap_count check is moved
into the state-check block) for code simplicity. |
| In the Linux kernel, the following vulnerability has been resolved:
ALSA: pcm: Fix races among concurrent prealloc proc writes
We have no protection against concurrent PCM buffer preallocation
changes via proc files, and it may potentially lead to UAF or some
weird problem. This patch applies the PCM open_mutex to the proc
write operation for avoiding the racy proc writes and the PCM stream
open (and further operations). |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: do not clean up repair bio if submit fails
The submit helper will always run bio_endio() on the bio if it fails to
submit, so cleaning up the bio just leads to a variety of use-after-free
and NULL pointer dereference bugs because we race with the endio
function that is cleaning up the bio. Instead just return BLK_STS_OK as
the repair function has to continue to process the rest of the pages,
and the endio for the repair bio will do the appropriate cleanup for the
page that it was given. |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: Fix use after free in hci_send_acl
This fixes the following trace caused by receiving
HCI_EV_DISCONN_PHY_LINK_COMPLETE which does call hci_conn_del without
first checking if conn->type is in fact AMP_LINK and in case it is
do properly cleanup upper layers with hci_disconn_cfm:
==================================================================
BUG: KASAN: use-after-free in hci_send_acl+0xaba/0xc50
Read of size 8 at addr ffff88800e404818 by task bluetoothd/142
CPU: 0 PID: 142 Comm: bluetoothd Not tainted
5.17.0-rc5-00006-gda4022eeac1a #7
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS
rel-1.14.0-0-g155821a1990b-prebuilt.qemu.org 04/01/2014
Call Trace:
<TASK>
dump_stack_lvl+0x45/0x59
print_address_description.constprop.0+0x1f/0x150
kasan_report.cold+0x7f/0x11b
hci_send_acl+0xaba/0xc50
l2cap_do_send+0x23f/0x3d0
l2cap_chan_send+0xc06/0x2cc0
l2cap_sock_sendmsg+0x201/0x2b0
sock_sendmsg+0xdc/0x110
sock_write_iter+0x20f/0x370
do_iter_readv_writev+0x343/0x690
do_iter_write+0x132/0x640
vfs_writev+0x198/0x570
do_writev+0x202/0x280
do_syscall_64+0x38/0x90
entry_SYSCALL_64_after_hwframe+0x44/0xae
RSP: 002b:00007ffce8a099b8 EFLAGS: 00000246 ORIG_RAX: 0000000000000014
Code: 0f 00 f7 d8 64 89 02 48 c7 c0 ff ff ff ff eb b8 0f 1f 00 f3
0f 1e fa 64 8b 04 25 18 00 00 00 85 c0 75 10 b8 14 00 00 00 0f 05
<48> 3d 00 f0 ff ff 77 51 c3 48 83 ec 28 89 54 24 1c 48 89 74 24 10
RDX: 0000000000000001 RSI: 00007ffce8a099e0 RDI: 0000000000000015
RAX: ffffffffffffffda RBX: 00007ffce8a099e0 RCX: 00007f788fc3cf77
R10: 00007ffce8af7080 R11: 0000000000000246 R12: 000055e4ccf75580
RBP: 0000000000000015 R08: 0000000000000002 R09: 0000000000000001
</TASK>
R13: 000055e4ccf754a0 R14: 000055e4ccf75cd0 R15: 000055e4ccf4a6b0
Allocated by task 45:
kasan_save_stack+0x1e/0x40
__kasan_kmalloc+0x81/0xa0
hci_chan_create+0x9a/0x2f0
l2cap_conn_add.part.0+0x1a/0xdc0
l2cap_connect_cfm+0x236/0x1000
le_conn_complete_evt+0x15a7/0x1db0
hci_le_conn_complete_evt+0x226/0x2c0
hci_le_meta_evt+0x247/0x450
hci_event_packet+0x61b/0xe90
hci_rx_work+0x4d5/0xc50
process_one_work+0x8fb/0x15a0
worker_thread+0x576/0x1240
kthread+0x29d/0x340
ret_from_fork+0x1f/0x30
Freed by task 45:
kasan_save_stack+0x1e/0x40
kasan_set_track+0x21/0x30
kasan_set_free_info+0x20/0x30
__kasan_slab_free+0xfb/0x130
kfree+0xac/0x350
hci_conn_cleanup+0x101/0x6a0
hci_conn_del+0x27e/0x6c0
hci_disconn_phylink_complete_evt+0xe0/0x120
hci_event_packet+0x812/0xe90
hci_rx_work+0x4d5/0xc50
process_one_work+0x8fb/0x15a0
worker_thread+0x576/0x1240
kthread+0x29d/0x340
ret_from_fork+0x1f/0x30
The buggy address belongs to the object at ffff88800c0f0500
The buggy address is located 24 bytes inside of
which belongs to the cache kmalloc-128 of size 128
The buggy address belongs to the page:
128-byte region [ffff88800c0f0500, ffff88800c0f0580)
flags: 0x100000000000200(slab|node=0|zone=1)
page:00000000fe45cd86 refcount:1 mapcount:0
mapping:0000000000000000 index:0x0 pfn:0xc0f0
raw: 0000000000000000 0000000080100010 00000001ffffffff
0000000000000000
raw: 0100000000000200 ffffea00003a2c80 dead000000000004
ffff8880078418c0
page dumped because: kasan: bad access detected
ffff88800c0f0400: 00 00 00 00 00 00 00 00 00 00 00 00 00 fc fc fc
Memory state around the buggy address:
>ffff88800c0f0500: fa fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
ffff88800c0f0480: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
ffff88800c0f0580: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
perf: Fix perf_pending_task() UaF
Per syzbot it is possible for perf_pending_task() to run after the
event is free()'d. There are two related but distinct cases:
- the task_work was already queued before destroying the event;
- destroying the event itself queues the task_work.
The first cannot be solved using task_work_cancel() since
perf_release() itself might be called from a task_work (____fput),
which means the current->task_works list is already empty and
task_work_cancel() won't be able to find the perf_pending_task()
entry.
The simplest alternative is extending the perf_event lifetime to cover
the task_work.
The second is just silly, queueing a task_work while you know the
event is going away makes no sense and is easily avoided by
re-arranging how the event is marked STATE_DEAD and ensuring it goes
through STATE_OFF on the way down. |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: hci_core: Fix leaking sent_cmd skb
sent_cmd memory is not freed before freeing hci_dev causing it to leak
it contents. |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: pm8001: Fix use-after-free for aborted SSP/STP sas_task
Currently a use-after-free may occur if a sas_task is aborted by the upper
layer before we handle the I/O completion in mpi_ssp_completion() or
mpi_sata_completion().
In this case, the following are the two steps in handling those I/O
completions:
- Call complete() to inform the upper layer handler of completion of
the I/O.
- Release driver resources associated with the sas_task in
pm8001_ccb_task_free() call.
When complete() is called, the upper layer may free the sas_task. As such,
we should not touch the associated sas_task afterwards, but we do so in the
pm8001_ccb_task_free() call.
Fix by swapping the complete() and pm8001_ccb_task_free() calls ordering. |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: pm8001: Fix use-after-free for aborted TMF sas_task
Currently a use-after-free may occur if a TMF sas_task is aborted before we
handle the IO completion in mpi_ssp_completion(). The abort occurs due to
timeout.
When the timeout occurs, the SAS_TASK_STATE_ABORTED flag is set and the
sas_task is freed in pm8001_exec_internal_tmf_task().
However, if the I/O completion occurs later, the I/O completion still
thinks that the sas_task is available. Fix this by clearing the ccb->task
if the TMF times out - the I/O completion handler does nothing if this
pointer is cleared. |
| In the Linux kernel, the following vulnerability has been resolved:
nvme: fix a possible use-after-free in controller reset during load
Unlike .queue_rq, in .submit_async_event drivers may not check the ctrl
readiness for AER submission. This may lead to a use-after-free
condition that was observed with nvme-tcp.
The race condition may happen in the following scenario:
1. driver executes its reset_ctrl_work
2. -> nvme_stop_ctrl - flushes ctrl async_event_work
3. ctrl sends AEN which is received by the host, which in turn
schedules AEN handling
4. teardown admin queue (which releases the queue socket)
5. AEN processed, submits another AER, calling the driver to submit
6. driver attempts to send the cmd
==> use-after-free
In order to fix that, add ctrl state check to validate the ctrl
is actually able to accept the AER submission.
This addresses the above race in controller resets because the driver
during teardown should:
1. change ctrl state to RESETTING
2. flush async_event_work (as well as other async work elements)
So after 1,2, any other AER command will find the
ctrl state to be RESETTING and bail out without submitting the AER. |
| In the Linux kernel, the following vulnerability has been resolved:
selinux: fix double free of cond_list on error paths
On error path from cond_read_list() and duplicate_policydb_cond_list()
the cond_list_destroy() gets called a second time in caller functions,
resulting in NULL pointer deref. Fix this by resetting the
cond_list_len to 0 in cond_list_destroy(), making subsequent calls a
noop.
Also consistently reset the cond_list pointer to NULL after freeing.
[PM: fix line lengths in the description] |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: fix use-after-free after failure to create a snapshot
At ioctl.c:create_snapshot(), we allocate a pending snapshot structure and
then attach it to the transaction's list of pending snapshots. After that
we call btrfs_commit_transaction(), and if that returns an error we jump
to 'fail' label, where we kfree() the pending snapshot structure. This can
result in a later use-after-free of the pending snapshot:
1) We allocated the pending snapshot and added it to the transaction's
list of pending snapshots;
2) We call btrfs_commit_transaction(), and it fails either at the first
call to btrfs_run_delayed_refs() or btrfs_start_dirty_block_groups().
In both cases, we don't abort the transaction and we release our
transaction handle. We jump to the 'fail' label and free the pending
snapshot structure. We return with the pending snapshot still in the
transaction's list;
3) Another task commits the transaction. This time there's no error at
all, and then during the transaction commit it accesses a pointer
to the pending snapshot structure that the snapshot creation task
has already freed, resulting in a user-after-free.
This issue could actually be detected by smatch, which produced the
following warning:
fs/btrfs/ioctl.c:843 create_snapshot() warn: '&pending_snapshot->list' not removed from list
So fix this by not having the snapshot creation ioctl directly add the
pending snapshot to the transaction's list. Instead add the pending
snapshot to the transaction handle, and then at btrfs_commit_transaction()
we add the snapshot to the list only when we can guarantee that any error
returned after that point will result in a transaction abort, in which
case the ioctl code can safely free the pending snapshot and no one can
access it anymore. |
| In the Linux kernel, the following vulnerability has been resolved:
moxart: fix potential use-after-free on remove path
It was reported that the mmc host structure could be accessed after it
was freed in moxart_remove(), so fix this by saving the base register of
the device and using it instead of the pointer dereference. |
| A use-after-free in the MPEG1or2Demux::newElementaryStream() function of Live555 Streaming Media v2018.09.02 allows attackers to cause a Denial of Service (DoS) via supplying a crafted MPEG Program stream. |
| In the Linux kernel, the following vulnerability has been resolved:
ksmbd: fix potential use-after-free in oplock/lease break ack
If ksmbd_iov_pin_rsp return error, use-after-free can happen by
accessing opinfo->state and opinfo_put and ksmbd_fd_put could
called twice. |
| In the Linux kernel, the following vulnerability has been resolved:
nbd: fix uaf in nbd_genl_connect() error path
There is a use-after-free issue in nbd:
block nbd6: Receive control failed (result -104)
block nbd6: shutting down sockets
==================================================================
BUG: KASAN: slab-use-after-free in recv_work+0x694/0xa80 drivers/block/nbd.c:1022
Write of size 4 at addr ffff8880295de478 by task kworker/u33:0/67
CPU: 2 UID: 0 PID: 67 Comm: kworker/u33:0 Not tainted 6.15.0-rc5-syzkaller-00123-g2c89c1b655c0 #0 PREEMPT(full)
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-debian-1.16.3-2~bpo12+1 04/01/2014
Workqueue: nbd6-recv recv_work
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:94 [inline]
dump_stack_lvl+0x116/0x1f0 lib/dump_stack.c:120
print_address_description mm/kasan/report.c:408 [inline]
print_report+0xc3/0x670 mm/kasan/report.c:521
kasan_report+0xe0/0x110 mm/kasan/report.c:634
check_region_inline mm/kasan/generic.c:183 [inline]
kasan_check_range+0xef/0x1a0 mm/kasan/generic.c:189
instrument_atomic_read_write include/linux/instrumented.h:96 [inline]
atomic_dec include/linux/atomic/atomic-instrumented.h:592 [inline]
recv_work+0x694/0xa80 drivers/block/nbd.c:1022
process_one_work+0x9cc/0x1b70 kernel/workqueue.c:3238
process_scheduled_works kernel/workqueue.c:3319 [inline]
worker_thread+0x6c8/0xf10 kernel/workqueue.c:3400
kthread+0x3c2/0x780 kernel/kthread.c:464
ret_from_fork+0x45/0x80 arch/x86/kernel/process.c:153
ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:245
</TASK>
nbd_genl_connect() does not properly stop the device on certain
error paths after nbd_start_device() has been called. This causes
the error path to put nbd->config while recv_work continue to use
the config after putting it, leading to use-after-free in recv_work.
This patch moves nbd_start_device() after the backend file creation. |
| A flaw was discovered in the X.Org X server’s X Keyboard (Xkb) extension when handling client resource cleanup. The software frees certain data structures without properly detaching related resources, leading to a use-after-free condition. This can cause memory corruption or a crash when affected clients disconnect. |
| A flaw was found in the X.Org X server and Xwayland when processing X11 Present extension notifications. Improper error handling during notification creation can leave dangling pointers that lead to a use-after-free condition. This can cause memory corruption or a crash, potentially allowing an attacker to execute arbitrary code or cause a denial of service. |