CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
A double-free condition exists in contrib/shpsort.c of shapelib 1.5.0 and older releases. This issue may allow an attacker to cause a denial of service or have other unspecified impact via control over malloc. |
Memory corruption in BTHOST due to double free while music playback and calls over bluetooth headset in Snapdragon Mobile |
Windows PrintWorkflowUserSvc Elevation of Privilege Vulnerability |
In the Linux kernel, the following vulnerability has been resolved:
tcp: fix tcp_init_transfer() to not reset icsk_ca_initialized
This commit fixes a bug (found by syzkaller) that could cause spurious
double-initializations for congestion control modules, which could cause
memory leaks or other problems for congestion control modules (like CDG)
that allocate memory in their init functions.
The buggy scenario constructed by syzkaller was something like:
(1) create a TCP socket
(2) initiate a TFO connect via sendto()
(3) while socket is in TCP_SYN_SENT, call setsockopt(TCP_CONGESTION),
which calls:
tcp_set_congestion_control() ->
tcp_reinit_congestion_control() ->
tcp_init_congestion_control()
(4) receive ACK, connection is established, call tcp_init_transfer(),
set icsk_ca_initialized=0 (without first calling cc->release()),
call tcp_init_congestion_control() again.
Note that in this sequence tcp_init_congestion_control() is called
twice without a cc->release() call in between. Thus, for CC modules
that allocate memory in their init() function, e.g, CDG, a memory leak
may occur. The syzkaller tool managed to find a reproducer that
triggered such a leak in CDG.
The bug was introduced when that commit 8919a9b31eb4 ("tcp: Only init
congestion control if not initialized already")
introduced icsk_ca_initialized and set icsk_ca_initialized to 0 in
tcp_init_transfer(), missing the possibility for a sequence like the
one above, where a process could call setsockopt(TCP_CONGESTION) in
state TCP_SYN_SENT (i.e. after the connect() or TFO open sendmsg()),
which would call tcp_init_congestion_control(). It did not intend to
reset any initialization that the user had already explicitly made;
it just missed the possibility of that particular sequence (which
syzkaller managed to find). |
curl before 7.86.0 has a double free. If curl is told to use an HTTP proxy for a transfer with a non-HTTP(S) URL, it sets up the connection to the remote server by issuing a CONNECT request to the proxy, and then tunnels the rest of the protocol through. An HTTP proxy might refuse this request (HTTP proxies often only allow outgoing connections to specific port numbers, like 443 for HTTPS) and instead return a non-200 status code to the client. Due to flaws in the error/cleanup handling, this could trigger a double free in curl if one of the following schemes were used in the URL for the transfer: dict, gopher, gophers, ldap, ldaps, rtmp, rtmps, or telnet. The earliest affected version is 7.77.0. |
usb_8dev_start_xmit in drivers/net/can/usb/usb_8dev.c in the Linux kernel through 5.17.1 has a double free. |
Windows MultiPoint Services Remote Code Execution Vulnerability |
SQL Server Native Client OLE DB Provider Remote Code Execution Vulnerability |
In the Linux kernel, the following vulnerability has been resolved:
smb: client: fix double free of TCP_Server_Info::hostname
When shutting down the server in cifs_put_tcp_session(), cifsd thread
might be reconnecting to multiple DFS targets before it realizes it
should exit the loop, so @server->hostname can't be freed as long as
cifsd thread isn't done. Otherwise the following can happen:
RIP: 0010:__slab_free+0x223/0x3c0
Code: 5e 41 5f c3 cc cc cc cc 4c 89 de 4c 89 cf 44 89 44 24 08 4c 89
1c 24 e8 fb cf 8e 00 44 8b 44 24 08 4c 8b 1c 24 e9 5f fe ff ff <0f>
0b 41 f7 45 08 00 0d 21 00 0f 85 2d ff ff ff e9 1f ff ff ff 80
RSP: 0018:ffffb26180dbfd08 EFLAGS: 00010246
RAX: ffff8ea34728e510 RBX: ffff8ea34728e500 RCX: 0000000000800068
RDX: 0000000000800068 RSI: 0000000000000000 RDI: ffff8ea340042400
RBP: ffffe112041ca380 R08: 0000000000000001 R09: 0000000000000000
R10: 6170732e31303000 R11: 70726f632e786563 R12: ffff8ea34728e500
R13: ffff8ea340042400 R14: ffff8ea34728e500 R15: 0000000000800068
FS: 0000000000000000(0000) GS:ffff8ea66fd80000(0000)
000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007ffc25376080 CR3: 000000012a2ba001 CR4:
PKRU: 55555554
Call Trace:
<TASK>
? show_trace_log_lvl+0x1c4/0x2df
? show_trace_log_lvl+0x1c4/0x2df
? __reconnect_target_unlocked+0x3e/0x160 [cifs]
? __die_body.cold+0x8/0xd
? die+0x2b/0x50
? do_trap+0xce/0x120
? __slab_free+0x223/0x3c0
? do_error_trap+0x65/0x80
? __slab_free+0x223/0x3c0
? exc_invalid_op+0x4e/0x70
? __slab_free+0x223/0x3c0
? asm_exc_invalid_op+0x16/0x20
? __slab_free+0x223/0x3c0
? extract_hostname+0x5c/0xa0 [cifs]
? extract_hostname+0x5c/0xa0 [cifs]
? __kmalloc+0x4b/0x140
__reconnect_target_unlocked+0x3e/0x160 [cifs]
reconnect_dfs_server+0x145/0x430 [cifs]
cifs_handle_standard+0x1ad/0x1d0 [cifs]
cifs_demultiplex_thread+0x592/0x730 [cifs]
? __pfx_cifs_demultiplex_thread+0x10/0x10 [cifs]
kthread+0xdd/0x100
? __pfx_kthread+0x10/0x10
ret_from_fork+0x29/0x50
</TASK> |
In the Linux kernel, the following vulnerability has been resolved:
mtd: rawnand: fix double free in atmel_pmecc_create_user()
The "user" pointer was converted from being allocated with kzalloc() to
being allocated by devm_kzalloc(). Calling kfree(user) will lead to a
double free. |
In the Linux kernel, the following vulnerability has been resolved:
wifi: cfg80211: clear wdev->cqm_config pointer on free
When we free wdev->cqm_config when unregistering, we also
need to clear out the pointer since the same wdev/netdev
may get re-registered in another network namespace, then
destroyed later, running this code again, which results in
a double-free. |
In the Linux kernel, the following vulnerability has been resolved:
stm class: Fix a double free in stm_register_device()
The put_device(&stm->dev) call will trigger stm_device_release() which
frees "stm" so the vfree(stm) on the next line is a double free. |
In the Linux kernel, the following vulnerability has been resolved:
btrfs: fix double free of anonymous device after snapshot creation failure
When creating a snapshot we may do a double free of an anonymous device
in case there's an error committing the transaction. The second free may
result in freeing an anonymous device number that was allocated by some
other subsystem in the kernel or another btrfs filesystem.
The steps that lead to this:
1) At ioctl.c:create_snapshot() we allocate an anonymous device number
and assign it to pending_snapshot->anon_dev;
2) Then we call btrfs_commit_transaction() and end up at
transaction.c:create_pending_snapshot();
3) There we call btrfs_get_new_fs_root() and pass it the anonymous device
number stored in pending_snapshot->anon_dev;
4) btrfs_get_new_fs_root() frees that anonymous device number because
btrfs_lookup_fs_root() returned a root - someone else did a lookup
of the new root already, which could some task doing backref walking;
5) After that some error happens in the transaction commit path, and at
ioctl.c:create_snapshot() we jump to the 'fail' label, and after
that we free again the same anonymous device number, which in the
meanwhile may have been reallocated somewhere else, because
pending_snapshot->anon_dev still has the same value as in step 1.
Recently syzbot ran into this and reported the following trace:
------------[ cut here ]------------
ida_free called for id=51 which is not allocated.
WARNING: CPU: 1 PID: 31038 at lib/idr.c:525 ida_free+0x370/0x420 lib/idr.c:525
Modules linked in:
CPU: 1 PID: 31038 Comm: syz-executor.2 Not tainted 6.8.0-rc4-syzkaller-00410-gc02197fc9076 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/25/2024
RIP: 0010:ida_free+0x370/0x420 lib/idr.c:525
Code: 10 42 80 3c 28 (...)
RSP: 0018:ffffc90015a67300 EFLAGS: 00010246
RAX: be5130472f5dd000 RBX: 0000000000000033 RCX: 0000000000040000
RDX: ffffc90009a7a000 RSI: 000000000003ffff RDI: 0000000000040000
RBP: ffffc90015a673f0 R08: ffffffff81577992 R09: 1ffff92002b4cdb4
R10: dffffc0000000000 R11: fffff52002b4cdb5 R12: 0000000000000246
R13: dffffc0000000000 R14: ffffffff8e256b80 R15: 0000000000000246
FS: 00007fca3f4b46c0(0000) GS:ffff8880b9500000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f167a17b978 CR3: 000000001ed26000 CR4: 0000000000350ef0
Call Trace:
<TASK>
btrfs_get_root_ref+0xa48/0xaf0 fs/btrfs/disk-io.c:1346
create_pending_snapshot+0xff2/0x2bc0 fs/btrfs/transaction.c:1837
create_pending_snapshots+0x195/0x1d0 fs/btrfs/transaction.c:1931
btrfs_commit_transaction+0xf1c/0x3740 fs/btrfs/transaction.c:2404
create_snapshot+0x507/0x880 fs/btrfs/ioctl.c:848
btrfs_mksubvol+0x5d0/0x750 fs/btrfs/ioctl.c:998
btrfs_mksnapshot+0xb5/0xf0 fs/btrfs/ioctl.c:1044
__btrfs_ioctl_snap_create+0x387/0x4b0 fs/btrfs/ioctl.c:1306
btrfs_ioctl_snap_create_v2+0x1ca/0x400 fs/btrfs/ioctl.c:1393
btrfs_ioctl+0xa74/0xd40
vfs_ioctl fs/ioctl.c:51 [inline]
__do_sys_ioctl fs/ioctl.c:871 [inline]
__se_sys_ioctl+0xfe/0x170 fs/ioctl.c:857
do_syscall_64+0xfb/0x240
entry_SYSCALL_64_after_hwframe+0x6f/0x77
RIP: 0033:0x7fca3e67dda9
Code: 28 00 00 00 (...)
RSP: 002b:00007fca3f4b40c8 EFLAGS: 00000246 ORIG_RAX: 0000000000000010
RAX: ffffffffffffffda RBX: 00007fca3e7abf80 RCX: 00007fca3e67dda9
RDX: 00000000200005c0 RSI: 0000000050009417 RDI: 0000000000000003
RBP: 00007fca3e6ca47a R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000000
R13: 000000000000000b R14: 00007fca3e7abf80 R15: 00007fff6bf95658
</TASK>
Where we get an explicit message where we attempt to free an anonymous
device number that is not currently allocated. It happens in a different
code path from the example below, at btrfs_get_root_ref(), so this change
may not fix the case triggered by sy
---truncated--- |
In the Linux kernel, the following vulnerability has been resolved:
uio: Fix use-after-free in uio_open
core-1 core-2
-------------------------------------------------------
uio_unregister_device uio_open
idev = idr_find()
device_unregister(&idev->dev)
put_device(&idev->dev)
uio_device_release
get_device(&idev->dev)
kfree(idev)
uio_free_minor(minor)
uio_release
put_device(&idev->dev)
kfree(idev)
-------------------------------------------------------
In the core-1 uio_unregister_device(), the device_unregister will kfree
idev when the idev->dev kobject ref is 1. But after core-1
device_unregister, put_device and before doing kfree, the core-2 may
get_device. Then:
1. After core-1 kfree idev, the core-2 will do use-after-free for idev.
2. When core-2 do uio_release and put_device, the idev will be double
freed.
To address this issue, we can get idev atomic & inc idev reference with
minor_lock. |
In the Linux kernel, the following vulnerability has been resolved:
md: fix double free of io_acct_set bioset
Now io_acct_set is alloc and free in personality. Remove the codes that
free io_acct_set in md_free and md_stop. |
In the Linux kernel, the following vulnerability has been resolved:
mac80211: fix potential double free on mesh join
While commit 6a01afcf8468 ("mac80211: mesh: Free ie data when leaving
mesh") fixed a memory leak on mesh leave / teardown it introduced a
potential memory corruption caused by a double free when rejoining the
mesh:
ieee80211_leave_mesh()
-> kfree(sdata->u.mesh.ie);
...
ieee80211_join_mesh()
-> copy_mesh_setup()
-> old_ie = ifmsh->ie;
-> kfree(old_ie);
This double free / kernel panics can be reproduced by using wpa_supplicant
with an encrypted mesh (if set up without encryption via "iw" then
ifmsh->ie is always NULL, which avoids this issue). And then calling:
$ iw dev mesh0 mesh leave
$ iw dev mesh0 mesh join my-mesh
Note that typically these commands are not used / working when using
wpa_supplicant. And it seems that wpa_supplicant or wpa_cli are going
through a NETDEV_DOWN/NETDEV_UP cycle between a mesh leave and mesh join
where the NETDEV_UP resets the mesh.ie to NULL via a memcpy of
default_mesh_setup in cfg80211_netdev_notifier_call, which then avoids
the memory corruption, too.
The issue was first observed in an application which was not using
wpa_supplicant but "Senf" instead, which implements its own calls to
nl80211.
Fixing the issue by removing the kfree()'ing of the mesh IE in the mesh
join function and leaving it solely up to the mesh leave to free the
mesh IE. |
In the Linux kernel, the following vulnerability has been resolved:
usb: gadget: f_tcm: Don't free command immediately
Don't prematurely free the command. Wait for the status completion of
the sense status. It can be freed then. Otherwise we will double-free
the command. |
In the Linux kernel, the following vulnerability has been resolved:
media: uvcvideo: Fix double free in error path
If the uvc_status_init() function fails to allocate the int_urb, it will
free the dev->status pointer but doesn't reset the pointer to NULL. This
results in the kfree() call in uvc_status_cleanup() trying to
double-free the memory. Fix it by resetting the dev->status pointer to
NULL after freeing it.
Reviewed by: Ricardo Ribalda <ribalda@chromium.org> |
In the Linux kernel, the following vulnerability has been resolved:
EDAC/igen6: Avoid segmentation fault on module unload
The segmentation fault happens because:
During modprobe:
1. In igen6_probe(), igen6_pvt will be allocated with kzalloc()
2. In igen6_register_mci(), mci->pvt_info will point to
&igen6_pvt->imc[mc]
During rmmod:
1. In mci_release() in edac_mc.c, it will kfree(mci->pvt_info)
2. In igen6_remove(), it will kfree(igen6_pvt);
Fix this issue by setting mci->pvt_info to NULL to avoid the double
kfree. |
In the Linux kernel, the following vulnerability has been resolved:
9p/xen: fix release of IRQ
Kernel logs indicate an IRQ was double-freed.
Pass correct device ID during IRQ release.
[Dominique: remove confusing variable reset to 0] |