CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
WeGIA is a web manager for charitable institutions. A Stored Cross-Site Scripting (XSS) vulnerability was identified in the CobrancaController.php endpoint of the WeGIA application. This vulnerability allows attackers to inject malicious scripts into the local_recepcao parameter. The injected scripts are stored on the server and executed automatically whenever the affected page is accessed by users, posing a significant security risk. This vulnerability is fixed in 3.2.8. |
An authenticated user without user-management permissions could view other users account information. |
This CVE ID has been rejected or withdrawn by its CVE Numbering Authority. |
A vulnerability was found in `podman build` and `buildah.` This issue occurs in a container breakout by using --jobs=2 and a race condition when building a malicious Containerfile. SELinux might mitigate it, but even with SELinux on, it still allows the enumeration of files and directories on the host. |
An authenticated administrator could modify the Created By username for a user account |
Users who were required to change their password could still access system information before changing their password |
Use after free in some Zoom Workplace Apps and SDKs may allow an authenticated user to conduct a denial of service via network access. |
ColdFusion versions 2025.1, 2023.13, 2021.19 and earlier are affected by a Server-Side Request Forgery (SSRF) vulnerability that could lead to limited file system read. A high-privilege authenticated attacker can force the application to make arbitrary requests via injection of arbitrary URLs. Exploitation of this issue does not require user interaction. |
A suspended or recently logged-out user could continue to interact with Blueframe until the time-out period occurred. |
In the Linux kernel, the following vulnerability has been resolved:
spi: cadence: Fix out-of-bounds array access in cdns_mrvl_xspi_setup_clock()
If requested_clk > 128, cdns_mrvl_xspi_setup_clock() iterates over the
entire cdns_mrvl_xspi_clk_div_list array without breaking out early,
causing 'i' to go beyond the array bounds.
Fix that by stopping the loop when it gets to the last entry, clamping
the clock to the minimum 6.25 MHz.
Fixes the following warning with an UBSAN kernel:
vmlinux.o: warning: objtool: cdns_mrvl_xspi_setup_clock: unexpected end of section .text.cdns_mrvl_xspi_setup_clock |
In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: Fix slab-use-after-free on hdcp_work
[Why]
A slab-use-after-free is reported when HDCP is destroyed but the
property_validate_dwork queue is still running.
[How]
Cancel the delayed work when destroying workqueue.
(cherry picked from commit 725a04ba5a95e89c89633d4322430cfbca7ce128) |
In the Linux kernel, the following vulnerability has been resolved:
ppp: Fix KMSAN uninit-value warning with bpf
Syzbot caught an "KMSAN: uninit-value" warning [1], which is caused by the
ppp driver not initializing a 2-byte header when using socket filter.
The following code can generate a PPP filter BPF program:
'''
struct bpf_program fp;
pcap_t *handle;
handle = pcap_open_dead(DLT_PPP_PPPD, 65535);
pcap_compile(handle, &fp, "ip and outbound", 0, 0);
bpf_dump(&fp, 1);
'''
Its output is:
'''
(000) ldh [2]
(001) jeq #0x21 jt 2 jf 5
(002) ldb [0]
(003) jeq #0x1 jt 4 jf 5
(004) ret #65535
(005) ret #0
'''
Wen can find similar code at the following link:
https://github.com/ppp-project/ppp/blob/master/pppd/options.c#L1680
The maintainer of this code repository is also the original maintainer
of the ppp driver.
As you can see the BPF program skips 2 bytes of data and then reads the
'Protocol' field to determine if it's an IP packet. Then it read the first
byte of the first 2 bytes to determine the direction.
The issue is that only the first byte indicating direction is initialized
in current ppp driver code while the second byte is not initialized.
For normal BPF programs generated by libpcap, uninitialized data won't be
used, so it's not a problem. However, for carefully crafted BPF programs,
such as those generated by syzkaller [2], which start reading from offset
0, the uninitialized data will be used and caught by KMSAN.
[1] https://syzkaller.appspot.com/bug?extid=853242d9c9917165d791
[2] https://syzkaller.appspot.com/text?tag=ReproC&x=11994913980000 |
In the Linux kernel, the following vulnerability has been resolved:
vlan: enforce underlying device type
Currently, VLAN devices can be created on top of non-ethernet devices.
Besides the fact that it doesn't make much sense, this also causes a
bug which leaks the address of a kernel function to usermode.
When creating a VLAN device, we initialize GARP (garp_init_applicant)
and MRP (mrp_init_applicant) for the underlying device.
As part of the initialization process, we add the multicast address of
each applicant to the underlying device, by calling dev_mc_add.
__dev_mc_add uses dev->addr_len to determine the length of the new
multicast address.
This causes an out-of-bounds read if dev->addr_len is greater than 6,
since the multicast addresses provided by GARP and MRP are only 6
bytes long.
This behaviour can be reproduced using the following commands:
ip tunnel add gretest mode ip6gre local ::1 remote ::2 dev lo
ip l set up dev gretest
ip link add link gretest name vlantest type vlan id 100
Then, the following command will display the address of garp_pdu_rcv:
ip maddr show | grep 01:80:c2:00:00:21
Fix the bug by enforcing the type of the underlying device during VLAN
device initialization. |
In the Linux kernel, the following vulnerability has been resolved:
scsi: mpi3mr: Fix possible crash when setting up bsg fails
If bsg_setup_queue() fails, the bsg_queue is assigned a non-NULL value.
Consequently, in mpi3mr_bsg_exit(), the condition "if(!mrioc->bsg_queue)"
will not be satisfied, preventing execution from entering
bsg_remove_queue(), which could lead to the following crash:
BUG: kernel NULL pointer dereference, address: 000000000000041c
Call Trace:
<TASK>
mpi3mr_bsg_exit+0x1f/0x50 [mpi3mr]
mpi3mr_remove+0x6f/0x340 [mpi3mr]
pci_device_remove+0x3f/0xb0
device_release_driver_internal+0x19d/0x220
unbind_store+0xa4/0xb0
kernfs_fop_write_iter+0x11f/0x200
vfs_write+0x1fc/0x3e0
ksys_write+0x67/0xe0
do_syscall_64+0x38/0x80
entry_SYSCALL_64_after_hwframe+0x78/0xe2 |
In the Linux kernel, the following vulnerability has been resolved:
vxlan: Fix uninit-value in vxlan_vnifilter_dump()
KMSAN reported an uninit-value access in vxlan_vnifilter_dump() [1].
If the length of the netlink message payload is less than
sizeof(struct tunnel_msg), vxlan_vnifilter_dump() accesses bytes
beyond the message. This can lead to uninit-value access. Fix this by
returning an error in such situations.
[1]
BUG: KMSAN: uninit-value in vxlan_vnifilter_dump+0x328/0x920 drivers/net/vxlan/vxlan_vnifilter.c:422
vxlan_vnifilter_dump+0x328/0x920 drivers/net/vxlan/vxlan_vnifilter.c:422
rtnl_dumpit+0xd5/0x2f0 net/core/rtnetlink.c:6786
netlink_dump+0x93e/0x15f0 net/netlink/af_netlink.c:2317
__netlink_dump_start+0x716/0xd60 net/netlink/af_netlink.c:2432
netlink_dump_start include/linux/netlink.h:340 [inline]
rtnetlink_dump_start net/core/rtnetlink.c:6815 [inline]
rtnetlink_rcv_msg+0x1256/0x14a0 net/core/rtnetlink.c:6882
netlink_rcv_skb+0x467/0x660 net/netlink/af_netlink.c:2542
rtnetlink_rcv+0x35/0x40 net/core/rtnetlink.c:6944
netlink_unicast_kernel net/netlink/af_netlink.c:1321 [inline]
netlink_unicast+0xed6/0x1290 net/netlink/af_netlink.c:1347
netlink_sendmsg+0x1092/0x1230 net/netlink/af_netlink.c:1891
sock_sendmsg_nosec net/socket.c:711 [inline]
__sock_sendmsg+0x330/0x3d0 net/socket.c:726
____sys_sendmsg+0x7f4/0xb50 net/socket.c:2583
___sys_sendmsg+0x271/0x3b0 net/socket.c:2637
__sys_sendmsg net/socket.c:2669 [inline]
__do_sys_sendmsg net/socket.c:2674 [inline]
__se_sys_sendmsg net/socket.c:2672 [inline]
__x64_sys_sendmsg+0x211/0x3e0 net/socket.c:2672
x64_sys_call+0x3878/0x3d90 arch/x86/include/generated/asm/syscalls_64.h:47
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xd9/0x1d0 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x77/0x7f
Uninit was created at:
slab_post_alloc_hook mm/slub.c:4110 [inline]
slab_alloc_node mm/slub.c:4153 [inline]
kmem_cache_alloc_node_noprof+0x800/0xe80 mm/slub.c:4205
kmalloc_reserve+0x13b/0x4b0 net/core/skbuff.c:587
__alloc_skb+0x347/0x7d0 net/core/skbuff.c:678
alloc_skb include/linux/skbuff.h:1323 [inline]
netlink_alloc_large_skb+0xa5/0x280 net/netlink/af_netlink.c:1196
netlink_sendmsg+0xac9/0x1230 net/netlink/af_netlink.c:1866
sock_sendmsg_nosec net/socket.c:711 [inline]
__sock_sendmsg+0x330/0x3d0 net/socket.c:726
____sys_sendmsg+0x7f4/0xb50 net/socket.c:2583
___sys_sendmsg+0x271/0x3b0 net/socket.c:2637
__sys_sendmsg net/socket.c:2669 [inline]
__do_sys_sendmsg net/socket.c:2674 [inline]
__se_sys_sendmsg net/socket.c:2672 [inline]
__x64_sys_sendmsg+0x211/0x3e0 net/socket.c:2672
x64_sys_call+0x3878/0x3d90 arch/x86/include/generated/asm/syscalls_64.h:47
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xd9/0x1d0 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x77/0x7f
CPU: 0 UID: 0 PID: 30991 Comm: syz.4.10630 Not tainted 6.12.0-10694-gc44daa7e3c73 #29
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.3-3.fc41 04/01/2014 |
In the Linux kernel, the following vulnerability has been resolved:
fs/proc: fix softlockup in __read_vmcore (part 2)
Since commit 5cbcb62dddf5 ("fs/proc: fix softlockup in __read_vmcore") the
number of softlockups in __read_vmcore at kdump time have gone down, but
they still happen sometimes.
In a memory constrained environment like the kdump image, a softlockup is
not just a harmless message, but it can interfere with things like RCU
freeing memory, causing the crashdump to get stuck.
The second loop in __read_vmcore has a lot more opportunities for natural
sleep points, like scheduling out while waiting for a data write to
happen, but apparently that is not always enough.
Add a cond_resched() to the second loop in __read_vmcore to (hopefully)
get rid of the softlockups. |
In the Linux kernel, the following vulnerability has been resolved:
ASoC: SOF: Intel: hda-dai: Ensure DAI widget is valid during params
Each cpu DAI should associate with a widget. However, the topology might
not create the right number of DAI widgets for aggregated amps. And it
will cause NULL pointer deference.
Check that the DAI widget associated with the CPU DAI is valid to prevent
NULL pointer deference due to missing DAI widgets in topologies with
aggregated amps. |
In the Linux kernel, the following vulnerability has been resolved:
platform/x86: int3472: Check for adev == NULL
Not all devices have an ACPI companion fwnode, so adev might be NULL. This
can e.g. (theoretically) happen when a user manually binds one of
the int3472 drivers to another i2c/platform device through sysfs.
Add a check for adev not being set and return -ENODEV in that case to
avoid a possible NULL pointer deref in skl_int3472_get_acpi_buffer(). |
In the Linux kernel, the following vulnerability has been resolved:
drm/dp_mst: Ensure mst_primary pointer is valid in drm_dp_mst_handle_up_req()
While receiving an MST up request message from one thread in
drm_dp_mst_handle_up_req(), the MST topology could be removed from
another thread via drm_dp_mst_topology_mgr_set_mst(false), freeing
mst_primary and setting drm_dp_mst_topology_mgr::mst_primary to NULL.
This could lead to a NULL deref/use-after-free of mst_primary in
drm_dp_mst_handle_up_req().
Avoid the above by holding a reference for mst_primary in
drm_dp_mst_handle_up_req() while it's used.
v2: Fix kfreeing the request if getting an mst_primary reference fails. |
In the Linux kernel, the following vulnerability has been resolved:
PCI: endpoint: epf-mhi: Avoid NULL dereference if DT lacks 'mmio'
If platform_get_resource_byname() fails and returns NULL because DT lacks
an 'mmio' property for the MHI endpoint, dereferencing res->start will
cause a NULL pointer access. Add a check to prevent it.
[kwilczynski: error message update per the review feedback]
[bhelgaas: commit log] |