Search

Search Results (324983 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2023-54056 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: kheaders: Use array declaration instead of char Under CONFIG_FORTIFY_SOURCE, memcpy() will check the size of destination and source buffers. Defining kernel_headers_data as "char" would trip this check. Since these addresses are treated as byte arrays, define them as arrays (as done everywhere else). This was seen with: $ cat /sys/kernel/kheaders.tar.xz >> /dev/null detected buffer overflow in memcpy kernel BUG at lib/string_helpers.c:1027! ... RIP: 0010:fortify_panic+0xf/0x20 [...] Call Trace: <TASK> ikheaders_read+0x45/0x50 [kheaders] kernfs_fop_read_iter+0x1a4/0x2f0 ...
CVE-2023-54059 1 Linux 1 Linux Kernel 2025-12-29 N/A
In the Linux kernel, the following vulnerability has been resolved: soc: mediatek: mtk-svs: Enable the IRQ later If the system does not come from reset (like when is booted via kexec()), the peripheral might triger an IRQ before the data structures are initialised. [ 0.227710] Unable to handle kernel NULL pointer dereference at virtual address 0000000000000f08 [ 0.227913] Call trace: [ 0.227918] svs_isr+0x8c/0x538
CVE-2023-54064 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ipmi:ssif: Fix a memory leak when scanning for an adapter The adapter scan ssif_info_find() sets info->adapter_name if the adapter info came from SMBIOS, as it's not set in that case. However, this function can be called more than once, and it will leak the adapter name if it had already been set. So check for NULL before setting it.
CVE-2023-54065 1 Linux 1 Linux Kernel 2025-12-29 N/A
In the Linux kernel, the following vulnerability has been resolved: net: dsa: realtek: fix out-of-bounds access The probe function sets priv->chip_data to (void *)priv + sizeof(*priv) with the expectation that priv has enough trailing space. However, only realtek-smi actually allocated this chip_data space. Do likewise in realtek-mdio to fix out-of-bounds accesses. These accesses likely went unnoticed so far, because of an (unused) buf[4096] member in struct realtek_priv, which caused kmalloc to round up the allocated buffer to a big enough size, so nothing of value was overwritten. With a different allocator (like in the barebox bootloader port of the driver) or with KASAN, the memory corruption becomes quickly apparent.
CVE-2023-54072 1 Linux 1 Linux Kernel 2025-12-29 7.0 High
In the Linux kernel, the following vulnerability has been resolved: ALSA: pcm: Fix potential data race at PCM memory allocation helpers The PCM memory allocation helpers have a sanity check against too many buffer allocations. However, the check is performed without a proper lock and the allocation isn't serialized; this allows user to allocate more memories than predefined max size. Practically seen, this isn't really a big problem, as it's more or less some "soft limit" as a sanity check, and it's not possible to allocate unlimitedly. But it's still better to address this for more consistent behavior. The patch covers the size check in do_alloc_pages() with the card->memory_mutex, and increases the allocated size there for preventing the further overflow. When the actual allocation fails, the size is decreased accordingly.
CVE-2023-54073 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: tpm: Add !tpm_amd_is_rng_defective() to the hwrng_unregister() call site The following crash was reported: [ 1950.279393] list_del corruption, ffff99560d485790->next is NULL [ 1950.279400] ------------[ cut here ]------------ [ 1950.279401] kernel BUG at lib/list_debug.c:49! [ 1950.279405] invalid opcode: 0000 [#1] PREEMPT SMP NOPTI [ 1950.279407] CPU: 11 PID: 5886 Comm: modprobe Tainted: G O 6.2.8_1 #1 [ 1950.279409] Hardware name: Gigabyte Technology Co., Ltd. B550M AORUS PRO-P/B550M AORUS PRO-P, BIOS F15c 05/11/2022 [ 1950.279410] RIP: 0010:__list_del_entry_valid+0x59/0xc0 [ 1950.279415] Code: 48 8b 01 48 39 f8 75 5a 48 8b 72 08 48 39 c6 75 65 b8 01 00 00 00 c3 cc cc cc cc 48 89 fe 48 c7 c7 08 a8 13 9e e8 b7 0a bc ff <0f> 0b 48 89 fe 48 c7 c7 38 a8 13 9e e8 a6 0a bc ff 0f 0b 48 89 fe [ 1950.279416] RSP: 0018:ffffa96d05647e08 EFLAGS: 00010246 [ 1950.279418] RAX: 0000000000000033 RBX: ffff99560d485750 RCX: 0000000000000000 [ 1950.279419] RDX: 0000000000000000 RSI: ffffffff9e107c59 RDI: 00000000ffffffff [ 1950.279420] RBP: ffffffffc19c5168 R08: 0000000000000000 R09: ffffa96d05647cc8 [ 1950.279421] R10: 0000000000000003 R11: ffffffff9ea2a568 R12: 0000000000000000 [ 1950.279422] R13: ffff99560140a2e0 R14: ffff99560127d2e0 R15: 0000000000000000 [ 1950.279422] FS: 00007f67da795380(0000) GS:ffff995d1f0c0000(0000) knlGS:0000000000000000 [ 1950.279424] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 1950.279424] CR2: 00007f67da7e65c0 CR3: 00000001feed2000 CR4: 0000000000750ee0 [ 1950.279426] PKRU: 55555554 [ 1950.279426] Call Trace: [ 1950.279428] <TASK> [ 1950.279430] hwrng_unregister+0x28/0xe0 [rng_core] [ 1950.279436] tpm_chip_unregister+0xd5/0xf0 [tpm] Add the forgotten !tpm_amd_is_rng_defective() invariant to the hwrng_unregister() call site inside tpm_chip_unregister().
CVE-2023-54076 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: smb: client: fix missed ses refcounting Use new cifs_smb_ses_inc_refcount() helper to get an active reference of @ses and @ses->dfs_root_ses (if set). This will prevent @ses->dfs_root_ses of being put in the next call to cifs_put_smb_ses() and thus potentially causing an use-after-free bug.
CVE-2023-54083 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: phy: tegra: xusb: Clear the driver reference in usb-phy dev For the dual-role port, it will assign the phy dev to usb-phy dev and use the port dev driver as the dev driver of usb-phy. When we try to destroy the port dev, it will destroy its dev driver as well. But we did not remove the reference from usb-phy dev. This might cause the use-after-free issue in KASAN.
CVE-2023-54089 1 Linux 1 Linux Kernel 2025-12-29 7.0 High
In the Linux kernel, the following vulnerability has been resolved: virtio_pmem: add the missing REQ_OP_WRITE for flush bio When doing mkfs.xfs on a pmem device, the following warning was ------------[ cut here ]------------ WARNING: CPU: 2 PID: 384 at block/blk-core.c:751 submit_bio_noacct Modules linked in: CPU: 2 PID: 384 Comm: mkfs.xfs Not tainted 6.4.0-rc7+ #154 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996) RIP: 0010:submit_bio_noacct+0x340/0x520 ...... Call Trace: <TASK> ? submit_bio_noacct+0xd5/0x520 submit_bio+0x37/0x60 async_pmem_flush+0x79/0xa0 nvdimm_flush+0x17/0x40 pmem_submit_bio+0x370/0x390 __submit_bio+0xbc/0x190 submit_bio_noacct_nocheck+0x14d/0x370 submit_bio_noacct+0x1ef/0x520 submit_bio+0x55/0x60 submit_bio_wait+0x5a/0xc0 blkdev_issue_flush+0x44/0x60 The root cause is that submit_bio_noacct() needs bio_op() is either WRITE or ZONE_APPEND for flush bio and async_pmem_flush() doesn't assign REQ_OP_WRITE when allocating flush bio, so submit_bio_noacct just fail the flush bio. Simply fix it by adding the missing REQ_OP_WRITE for flush bio. And we could fix the flush order issue and do flush optimization later.
CVE-2023-54095 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: powerpc/iommu: Fix notifiers being shared by PCI and VIO buses fail_iommu_setup() registers the fail_iommu_bus_notifier struct to both PCI and VIO buses. struct notifier_block is a linked list node, so this causes any notifiers later registered to either bus type to also be registered to the other since they share the same node. This causes issues in (at least) the vgaarb code, which registers a notifier for PCI buses. pci_notify() ends up being called on a vio device, converted with to_pci_dev() even though it's not a PCI device, and finally makes a bad access in vga_arbiter_add_pci_device() as discovered with KASAN: BUG: KASAN: slab-out-of-bounds in vga_arbiter_add_pci_device+0x60/0xe00 Read of size 4 at addr c000000264c26fdc by task swapper/0/1 Call Trace: dump_stack_lvl+0x1bc/0x2b8 (unreliable) print_report+0x3f4/0xc60 kasan_report+0x244/0x698 __asan_load4+0xe8/0x250 vga_arbiter_add_pci_device+0x60/0xe00 pci_notify+0x88/0x444 notifier_call_chain+0x104/0x320 blocking_notifier_call_chain+0xa0/0x140 device_add+0xac8/0x1d30 device_register+0x58/0x80 vio_register_device_node+0x9ac/0xce0 vio_bus_scan_register_devices+0xc4/0x13c __machine_initcall_pseries_vio_device_init+0x94/0xf0 do_one_initcall+0x12c/0xaa8 kernel_init_freeable+0xa48/0xba8 kernel_init+0x64/0x400 ret_from_kernel_thread+0x5c/0x64 Fix this by creating separate notifier_block structs for each bus type. [mpe: Add #ifdef to fix CONFIG_IBMVIO=n build]
CVE-2023-54099 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: fs: Protect reconfiguration of sb read-write from racing writes The reconfigure / remount code takes a lot of effort to protect filesystem's reconfiguration code from racing writes on remounting read-only. However during remounting read-only filesystem to read-write mode userspace writes can start immediately once we clear SB_RDONLY flag. This is inconvenient for example for ext4 because we need to do some writes to the filesystem (such as preparation of quota files) before we can take userspace writes so we are clearing SB_RDONLY flag before we are fully ready to accept userpace writes and syzbot has found a way to exploit this [1]. Also as far as I'm reading the code the filesystem remount code was protected from racing writes in the legacy mount path by the mount's MNT_READONLY flag so this is relatively new problem. It is actually fairly easy to protect remount read-write from racing writes using sb->s_readonly_remount flag so let's just do that instead of having to workaround these races in the filesystem code. [1] https://lore.kernel.org/all/00000000000006a0df05f6667499@google.com/T/
CVE-2023-54101 1 Linux 1 Linux Kernel 2025-12-29 N/A
In the Linux kernel, the following vulnerability has been resolved: driver: soc: xilinx: use _safe loop iterator to avoid a use after free The hash_for_each_possible() loop dereferences "eve_data" to get the next item on the list. However the loop frees eve_data so it leads to a use after free. Use hash_for_each_possible_safe() instead.
CVE-2023-54106 1 Linux 1 Linux Kernel 2025-12-29 7.0 High
In the Linux kernel, the following vulnerability has been resolved: net/mlx5: fix potential memory leak in mlx5e_init_rep_rx The memory pointed to by the priv->rx_res pointer is not freed in the error path of mlx5e_init_rep_rx, which can lead to a memory leak. Fix by freeing the memory in the error path, thereby making the error path identical to mlx5e_cleanup_rep_rx().
CVE-2023-54107 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: blk-cgroup: dropping parent refcount after pd_free_fn() is done Some cgroup policies will access parent pd through child pd even after pd_offline_fn() is done. If pd_free_fn() for parent is called before child, then UAF can be triggered. Hence it's better to guarantee the order of pd_free_fn(). Currently refcount of parent blkg is dropped in __blkg_release(), which is before pd_free_fn() is called in blkg_free_work_fn() while blkg_free_work_fn() is called asynchronously. This patch make sure pd_free_fn() called from removing cgroup is ordered by delaying dropping parent refcount after calling pd_free_fn() for child. BTW, pd_free_fn() will also be called from blkcg_deactivate_policy() from deleting device, and following patches will guarantee the order.
CVE-2023-54108 1 Linux 1 Linux Kernel 2025-12-29 7.0 High
In the Linux kernel, the following vulnerability has been resolved: scsi: qla2xxx: Fix DMA-API call trace on NVMe LS requests The following message and call trace was seen with debug kernels: DMA-API: qla2xxx 0000:41:00.0: device driver failed to check map error [device address=0x00000002a3ff38d8] [size=1024 bytes] [mapped as single] WARNING: CPU: 0 PID: 2930 at kernel/dma/debug.c:1017 check_unmap+0xf42/0x1990 Call Trace: debug_dma_unmap_page+0xc9/0x100 qla_nvme_ls_unmap+0x141/0x210 [qla2xxx] Remove DMA mapping from the driver altogether, as it is already done by FC layer. This prevents the warning.
CVE-2023-54116 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drm/fbdev-generic: prohibit potential out-of-bounds access The fbdev test of IGT may write after EOF, which lead to out-of-bound access for drm drivers with fbdev-generic. For example, run fbdev test on a x86+ast2400 platform, with 1680x1050 resolution, will cause the linux kernel hang with the following call trace: Oops: 0000 [#1] PREEMPT SMP PTI [IGT] fbdev: starting subtest eof Workqueue: events drm_fb_helper_damage_work [drm_kms_helper] [IGT] fbdev: starting subtest nullptr RIP: 0010:memcpy_erms+0xa/0x20 RSP: 0018:ffffa17d40167d98 EFLAGS: 00010246 RAX: ffffa17d4eb7fa80 RBX: ffffa17d40e0aa80 RCX: 00000000000014c0 RDX: 0000000000001a40 RSI: ffffa17d40e0b000 RDI: ffffa17d4eb80000 RBP: ffffa17d40167e20 R08: 0000000000000000 R09: ffff89522ecff8c0 R10: ffffa17d4e4c5000 R11: 0000000000000000 R12: ffffa17d4eb7fa80 R13: 0000000000001a40 R14: 000000000000041a R15: ffffa17d40167e30 FS: 0000000000000000(0000) GS:ffff895257380000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: ffffa17d40e0b000 CR3: 00000001eaeca006 CR4: 00000000001706e0 Call Trace: <TASK> ? drm_fbdev_generic_helper_fb_dirty+0x207/0x330 [drm_kms_helper] drm_fb_helper_damage_work+0x8f/0x170 [drm_kms_helper] process_one_work+0x21f/0x430 worker_thread+0x4e/0x3c0 ? __pfx_worker_thread+0x10/0x10 kthread+0xf4/0x120 ? __pfx_kthread+0x10/0x10 ret_from_fork+0x2c/0x50 </TASK> CR2: ffffa17d40e0b000 ---[ end trace 0000000000000000 ]--- The is because damage rectangles computed by drm_fb_helper_memory_range_to_clip() function is not guaranteed to be bound in the screen's active display area. Possible reasons are: 1) Buffers are allocated in the granularity of page size, for mmap system call support. The shadow screen buffer consumed by fbdev emulation may also choosed be page size aligned. 2) The DIV_ROUND_UP() used in drm_fb_helper_memory_range_to_clip() will introduce off-by-one error. For example, on a 16KB page size system, in order to store a 1920x1080 XRGB framebuffer, we need allocate 507 pages. Unfortunately, the size 1920*1080*4 can not be divided exactly by 16KB. 1920 * 1080 * 4 = 8294400 bytes 506 * 16 * 1024 = 8290304 bytes 507 * 16 * 1024 = 8306688 bytes line_length = 1920*4 = 7680 bytes 507 * 16 * 1024 / 7680 = 1081.6 off / line_length = 507 * 16 * 1024 / 7680 = 1081 DIV_ROUND_UP(507 * 16 * 1024, 7680) will yeild 1082 memcpy_toio() typically issue the copy line by line, when copy the last line, out-of-bound access will be happen. Because: 1082 * line_length = 1082 * 7680 = 8309760, and 8309760 > 8306688 Note that userspace may still write to the invisiable area if a larger buffer than width x stride is exposed. But it is not a big issue as long as there still have memory resolve the access if not drafting so far. - Also limit the y1 (Daniel) - keep fix patch it to minimal (Daniel) - screen_size is page size aligned because of it need mmap (Thomas) - Adding fixes tag (Thomas)
CVE-2023-54119 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: inotify: Avoid reporting event with invalid wd When inotify_freeing_mark() races with inotify_handle_inode_event() it can happen that inotify_handle_inode_event() sees that i_mark->wd got already reset to -1 and reports this value to userspace which can confuse the inotify listener. Avoid the problem by validating that wd is sensible (and pretend the mark got removed before the event got generated otherwise).
CVE-2023-54126 1 Linux 1 Linux Kernel 2025-12-29 N/A
In the Linux kernel, the following vulnerability has been resolved: crypto: safexcel - Cleanup ring IRQ workqueues on load failure A failure loading the safexcel driver results in the following warning on boot, because the IRQ affinity has not been correctly cleaned up. Ensure we clean up the affinity and workqueues on a failure to load the driver. crypto-safexcel: probe of f2800000.crypto failed with error -2 ------------[ cut here ]------------ WARNING: CPU: 1 PID: 232 at kernel/irq/manage.c:1913 free_irq+0x300/0x340 Modules linked in: hwmon mdio_i2c crypto_safexcel(+) md5 sha256_generic libsha256 authenc libdes omap_rng rng_core nft_masq nft_nat nft_chain_nat nf_nat nft_ct nf_conntrack nf_defrag_ipv6 nf_defrag_ipv4 nf_tables libcrc32c nfnetlink fuse autofs4 CPU: 1 PID: 232 Comm: systemd-udevd Tainted: G W 6.1.6-00002-g9d4898824677 #3 Hardware name: MikroTik RB5009 (DT) pstate: 600000c5 (nZCv daIF -PAN -UAO -TCO -DIT -SSBS BTYPE=--) pc : free_irq+0x300/0x340 lr : free_irq+0x2e0/0x340 sp : ffff800008fa3890 x29: ffff800008fa3890 x28: 0000000000000000 x27: 0000000000000000 x26: ffff8000008e6dc0 x25: ffff000009034cac x24: ffff000009034d50 x23: 0000000000000000 x22: 000000000000004a x21: ffff0000093e0d80 x20: ffff000009034c00 x19: ffff00000615fc00 x18: 0000000000000000 x17: 0000000000000000 x16: 0000000000000000 x15: 000075f5c1584c5e x14: 0000000000000017 x13: 0000000000000000 x12: 0000000000000040 x11: ffff000000579b60 x10: ffff000000579b62 x9 : ffff800008bbe370 x8 : ffff000000579dd0 x7 : 0000000000000000 x6 : ffff000000579e18 x5 : ffff000000579da8 x4 : ffff800008ca0000 x3 : ffff800008ca0188 x2 : 0000000013033204 x1 : ffff000009034c00 x0 : ffff8000087eadf0 Call trace: free_irq+0x300/0x340 devm_irq_release+0x14/0x20 devres_release_all+0xa0/0x100 device_unbind_cleanup+0x14/0x60 really_probe+0x198/0x2d4 __driver_probe_device+0x74/0xdc driver_probe_device+0x3c/0x110 __driver_attach+0x8c/0x190 bus_for_each_dev+0x6c/0xc0 driver_attach+0x20/0x30 bus_add_driver+0x148/0x1fc driver_register+0x74/0x120 __platform_driver_register+0x24/0x30 safexcel_init+0x48/0x1000 [crypto_safexcel] do_one_initcall+0x4c/0x1b0 do_init_module+0x44/0x1cc load_module+0x1724/0x1be4 __do_sys_finit_module+0xbc/0x110 __arm64_sys_finit_module+0x1c/0x24 invoke_syscall+0x44/0x110 el0_svc_common.constprop.0+0xc0/0xe0 do_el0_svc+0x20/0x80 el0_svc+0x14/0x4c el0t_64_sync_handler+0xb0/0xb4 el0t_64_sync+0x148/0x14c ---[ end trace 0000000000000000 ]---
CVE-2022-50712 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: devlink: hold region lock when flushing snapshots Netdevsim triggers a splat on reload, when it destroys regions with snapshots pending: WARNING: CPU: 1 PID: 787 at net/core/devlink.c:6291 devlink_region_snapshot_del+0x12e/0x140 CPU: 1 PID: 787 Comm: devlink Not tainted 6.1.0-07460-g7ae9888d6e1c #580 RIP: 0010:devlink_region_snapshot_del+0x12e/0x140 Call Trace: <TASK> devl_region_destroy+0x70/0x140 nsim_dev_reload_down+0x2f/0x60 [netdevsim] devlink_reload+0x1f7/0x360 devlink_nl_cmd_reload+0x6ce/0x860 genl_family_rcv_msg_doit.isra.0+0x145/0x1c0 This is the locking assert in devlink_region_snapshot_del(), we're supposed to be holding the region->snapshot_lock here.
CVE-2022-50713 1 Linux 1 Linux Kernel 2025-12-29 N/A
In the Linux kernel, the following vulnerability has been resolved: clk: visconti: Fix memory leak in visconti_register_pll() @pll->rate_table has allocated memory by kmemdup(), if clk_hw_register() fails, it should be freed, otherwise it will cause memory leak issue, this patch fixes it.